Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
2. (c + 2 / c(c - 2)) - (8 / (c - 2)(c + 2)) = (c + 2)(c + 2) - 8c / c(c - 2)(c +2) = (c + 2)^2 - 8c / c(c - 2)(c + 2) = c^2 + 4c + 4 - 8c / c(c - 2)(c+2) = c^2 - 4c + 4 / c(c - 2)(c +2) = (c - 2)^2 = c(c - 2)(c + 2) = c - 2 / c(c + 2)
3. (x + y / 4x(x - y)(x + y)) - (x - y / 4x(x + 4)) = x + y - x + y(x - y) / 4x(x - y)(x + y) = 2y(x - y) / 4x(x - y)(x + y) = 2y / 4x(x + y)
Извини, но объяснять 2 последних примера было выше моих сил. Надеюсь, ты сама разберешься:)