{1;3;5;...;99} -множество нечётных чисел меньших 100 Сколько их? а₁=1; a₂=3 => d=a₂-a₁=3-1=2 a(n)=99 a(n)=a₁+d(n-1) 1+2(n-1)=99 2(n-1)=98 n-1=49 n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100 Сколько их? a₁=3, a₂=9 => d=a₂-a₁=9-3=6 a(m)=99 a(m)=a₁+d(m-1) 3+6(m-1)=99 6(m-1)=96 m-1=16 m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100 а₁=5; а₂=15 => d=a₂-a₁=15-5=10 a(p)=a₁+d(p-1) 5+10(p-1)=95 10(p-1)=90 p-1=9 p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3) Общее количество нечётных натуральных чисел, делящихся на 3 или на 5: m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
так как каждое последующее число занимает количество мест, равное этому числу, то общее число мест равно сумме ряда (арифметической прогрессии)
S = 1+2+3+4+5+ ... +n=2010
(1+n)n/2=2010
n²+n-4020=0
n=62,9... > 62 (второй корень отрицательный и не подходит)
62 < 62,9... < 63
значит
n=63
ПРИМЕЧАНИЕ:
заметим, что только часть из 63 чисел равных 63 использованы в задаче, т.к.
S(62)=1953 ( если использованы все 62 числа, равные 62)
(последовательность занимала бы 1953 места)
S(63)=2016 ( если бы были использованы все 63 числа, равные 63)
(последовательность занимала бы 2016 мест)
Сколько их?
а₁=1; a₂=3 => d=a₂-a₁=3-1=2
a(n)=99
a(n)=a₁+d(n-1)
1+2(n-1)=99
2(n-1)=98
n-1=49
n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100
Сколько их?
a₁=3, a₂=9 => d=a₂-a₁=9-3=6
a(m)=99
a(m)=a₁+d(m-1)
3+6(m-1)=99
6(m-1)=96
m-1=16
m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100
а₁=5; а₂=15 => d=a₂-a₁=15-5=10
a(p)=a₁+d(p-1)
5+10(p-1)=95
10(p-1)=90
p-1=9
p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3)
Общее количество нечётных натуральных чисел, делящихся на 3 или на 5:
m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
ответ: 26