2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим:
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)y=190 (взрослый)
x=125 (детский)
y=190 (взрослый)
объяснение:
2х+y=440;
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим:
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)
2х+y=440; 3x+2y=755 - это сис-ма ур-ний, методом гаусса выразим y через x и получим: y=440-2x, заменим: 3x+2(440-2x)=7553x+880-4x+755-3x+4x=-755+880x=125 (детский)y=190 (взрослый)
ответ:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)
объяснение:
|x²-9|> 2|x|+1
рассмотреть все возможные случай:
|x²-9|-2|x|> 1
решим систему неравенств 4 случая:
x²-9-2x> 1, x²-9≥0, x≥0
-(x²-9)-2x> 1, x²-9< 0, x≥0
x²-9-2×(-x)> 1, x²-9≥0, x< 0
-(x²-9)-2×(-x)> 1, x²-9< 0, x< 0
решим неравенств относительно x:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x≥0
x∈(-4, 2), x∈(-3, 3), x≥0
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]∪[3, +∞), x< 0
x∈(-2, 4), x∈(-3,3), x< 0
найдем перечисление:
x∈(-∞, 1-√11)∪(1+√11, +∞), x∈[3, +∞)
x∈(-4, 2), x∈[0, 3)
x∈(-∞, -1-√11)∪(-1+√11, +∞), x∈(-∞, -3]
x∈(-2, 4), x∈(-3, 0)
найдем перечисление:
x∈(1+√11, +∞)
x∈[0, 2)
x∈(-∞, -1-√11)
x∈(-2, 0)
найдем объединение:
x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)