Плот км по течению реки, скорость которой 3 км/ч. Время, потраченое, на преодоление этого пути, равно 39:3=13 часов. За это время лодка проплыла в пункт В и возратилась назад, преодолев путь 210 км (105×2). Лодка преодолела этот путь за 13-1=12 часов. Пускай х - скорость лодки. Тогда по течению реки скорость будет х+3, против течения - х-3. Имеем 105/(х+3)+105/(х-3)=12, (105×(х-3)+105×(х+3))/((х-3)×(х+3))=12, 105х-315+105х+315=12×(х^2-9), 210х=12х^2-108, 12х^2-210х-108=0, D=(-210)^2-4×12×(-108)=49284. х1=(210-корень 49284)/(2×12)=(210-222)/24=-12/24=-0,5, х2=(210+корень 49284)/(2×12)=(210+222)/24=432/24=18. х1=-0,5 не является ответом задачи, так как скорость не может быть отрицательной. ответ: скорость лодки 18 км/ч.
У переменной а наименьшая степень 2, у b наименьшая 1.
Значит, выносим a^2*b
16a^5b - 8a^4b^3 - 6a^3b^3 + 10a^2b^4 = 2a^2b*(8a^3 - 4a^2b^2 - 3ab^2 + 5b^3)
2) Выносим за скобки (2x - 7)
(2x - 7)*(3a + 5b - (2x - 7)) = (2x - 7)(3a + 5b - 2x + 7)
Общий множитель выносим из-под квадрата, то есть возводим в квадрат.
1) (3x + 6)^2 = (3(x + 2))^2 = 9(x + 2)^2
2) (7x - 14)^2 = 49(x - 2)^2
3) (5m + 30)^2 = 25(m + 6)^2
4) (2a - 4b)^3 = 8(a - 2b)^3 - здесь 2 в куб возвели