A)y=1,2x-6 если график функции пересекается с осью ох, то координата у=0, вот и подставляем в функцию вместо у=0 и находим х. 0= 1,2x-6 1,2x=6 х=5 получается точка (5,0) если график функции пересекается с осью оу, то координата х=0, вот и подставляем в функцию вместо х=0 и находим у . y=1,2*0-6 у=-6 получается точка (0,-6) b)y=-1/4x+2 делаем аналогично с осью ох: у=0 0=-1/4x+2 1/4x=2 х=8 (8,0) с осью оу: х=0 у=-1/4*0+2 у=2 (0,2) c)y=2,7x+3 с осью ох: у=0 0=2,7x+3 2,7x=-3 х=1 1/9 ( это одна целая одна девятая) ( 1 1/9, 0) с осью оу: х=0 y=2,7*0+3 у=3 (0,3)
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: