2 Сos² 2x -1 +Cos 2x = 0 2 Cos² 2x - Cos x -1 = 0 Решаем как квадратное a) Cos 2x = 1 б) Cos 2x = -1/2 2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z x = +- π/3 + πn,где n∈ Z Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток Разберёмся с указанным отрезком на числовой прямой -π -π/2 0 π/3 а) х = πк,где к ∈Z k = -1 x = -π ( попадает в указанный отрезок) к = 0 х = 0 ( попадает в указанный отрезок) к = 1 к = 2 х = 2π( не попадает в указанный отрезок) б) х = +- π/3 +πn,где n ∈Z n = 0 x = +-π/3 (попадает в указанный отрезок) n = 1 х = π/3 + π( не попадает) х= - π/3 +π ( не попадает) n = -1 x = π/3 - π = -2π/3( попадает) х = -π/3 -π(не попадает)
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж
2 Cos² 2x - Cos x -1 = 0
Решаем как квадратное
a) Cos 2x = 1 б) Cos 2x = -1/2
2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z
х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z
x = +- π/3 + πn,где n∈ Z
Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток
Разберёмся с указанным отрезком на числовой прямой
-π -π/2 0 π/3
а) х = πк,где к ∈Z
k = -1
x = -π ( попадает в указанный отрезок)
к = 0
х = 0 ( попадает в указанный отрезок)
к = 1
к = 2
х = 2π( не попадает в указанный отрезок)
б) х = +- π/3 +πn,где n ∈Z
n = 0
x = +-π/3 (попадает в указанный отрезок)
n = 1
х = π/3 + π( не попадает)
х= - π/3 +π ( не попадает)
n = -1
x = π/3 - π = -2π/3( попадает)
х = -π/3 -π(не попадает)