Каждая сторона вписанного треугольника соединяет середины сторон исходного и поэтому является средней линией. Средняя линия треугольника равна половине длины стороны, которой она параллельна.
Коэффициент k подобия этих треугольников ½
.Отсюда каждая сторона первого вписанного треугольника равна 8·½ =4 см
.Пусть периметр исходного треугольника будет Р₁,
периметр первого вписанного треугольника- р₂
Тогда Р₁=8·24 см
р₂=24·½ =12 cм
Отношение периметров подобных треугольников равно коэффициенту их подобия.
р₃=12·½=6 см
р₄=6·½=3 см
р₅=3·½=1,5 см
р₆=1,5·½=0,75 см
р₇=0,75·½=0,375 см
р₈=0,375·½=0,1875 см
Как Вы, наверное, обратили внимание, последовательность периметров сторон вписанных треугольников - геометрическая прогрессия, где каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число ½.
Каждый член геометрической прогрессии {bn} определяется формулой
{x+2y=10 => y=(10-x)/2 => -0.5x+5
{f(x)=3x-2
{f(x)=-0.5x+5
x=2
y=4
Проверка: {3*2-4=2
{2+2*4=10
Графическое решение - во вложении
2. {x-3y=6 => x=6+3y
{2y-5x=-4
2y-5(6+3y)=-4
2y-30-15y=-4
-13y=26
y=-2
x=6+3*-2
x=0
3. {3x-2y=4 |*2
{6x+4y=16 |*1
{6x-4y=8
{6x+4y=16
12x=24
x=2
3*2-2y=4
-2y=-2
y=1
6*2+4y=16
12+4y=16
4y=4
y=1
Координаты точки пересечения графиков (2;1)
4. {4x-6y=2 |*1
{3y-2x=1 => -2x+3y=1 |*2
{4x-6y=2
{-4x+6y=2
4x-4x-6y+6y=2+2
0=4 - равенство неверно
Cистема не имеет решений
Каждая сторона вписанного треугольника соединяет середины сторон исходного и поэтому является средней линией. Средняя линия треугольника равна половине длины стороны, которой она параллельна.
Коэффициент k подобия этих треугольников ½
.Отсюда каждая сторона первого вписанного треугольника равна 8·½ =4 см
.Пусть периметр исходного треугольника будет Р₁,
периметр первого вписанного треугольника- р₂
Тогда Р₁=8·24 см
р₂=24·½ =12 cм
Отношение периметров подобных треугольников равно коэффициенту их подобия.
р₃=12·½=6 см
р₄=6·½=3 см
р₅=3·½=1,5 см
р₆=1,5·½=0,75 см
р₇=0,75·½=0,375 см
р₈=0,375·½=0,1875 см
Как Вы, наверное, обратили внимание, последовательность периметров сторон вписанных треугольников - геометрическая прогрессия, где каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число ½.
Каждый член геометрической прогрессии {bn} определяется формулой
bn = b₁ · qⁿ⁻¹
b₈=24·(½)⁷=0,1875 см