A=4k+3, k∈Z - все числа при делении которых на 4 получаем остаток 3.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3 Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3. Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1. (12n+10)+1 при делении на 2 всегда получаем остаток 1.
Найдём из a=4k+3, все числа при делении на 3 которых получаем остаток 2.
По отношению к делимости на 3 всё множество чисел k можно разбить на три класса: числа вида 3n, 3n+1 ,3n+2. Других целых k нет.
Если k=3n, то 4*(3n)+3=(12n+3)+0 - остаток 0 при делении на 3
Если k=3n+1, то 4*(3n+1)+3=(12n+3)+1 - остаток 1 при делении на 3.
Если k=3n+2, то 4*(3n+2)+3=(12n+9)+2 - остаток 2 при делении на 3.
Получаем 12n+11=(12n+10)+1.
(12n+10)+1 при делении на 2 всегда получаем остаток 1.
ответ: 12n+11, n∈Z
а) х+19=30
х=30-19
х=11
11+19=30 (это проверка)
30=30
б) 27-х=27+х
х+х=27-27
2х=0
х=0:2
х=0
27-х=27+х
27-0=27+0
27=27
в) 30+х=32-х
х+х=32-30
2х=2
х=2:2
х=1
30+х=32-х
30+1=32-1
31=31
г) 10+х+2=15+х-3
(10+2)+х=(15-3)+х
12+х=12+х
х+х=12-12
2х=0
х=0:2
х=0
10+0+2=15+0-3
12=12
10+х+2=15+х-3
х=9
10+9+2=15+9-3
21=21
10+х+2=15+х-3
х=5
10+5+2=15+5-3
21=21