1. Определяем значения функции на границах отрезка: f(-3) = (-3)³ - 8*(-3)² + 17 = -27-72+17 = -82 f(3) = 3³ - 8*(3)² + 17 = 27-72+17 = -28
Наименьшее из них - -82 при x=-3.
2. Определим точки максимума и минимума (экстремума) функции. Для этого вычислим первую производную и найдем ее корни:
f'(x) = 3x²-16x = x(3x-16)
Корни: x=0, x=16/3. При этом на промежутке от -∞ до 0 первая производная положительна, на отрезке между корнями - отрицательна, и от 16/3 до +∞ - вновь положительна. Это означает, что на отрезке между корней функция f(x) убывающая, а на лучах вне отрезка [0; 16/3] - возрастающая.
При этом при x=0 функция f(x) имеет локальный максимум (f(x)=17), а при x=16/3 - локальный минимум. Но корень x=16/3=5 1/3 > 3 находится вне отрезка [-3; 3], поэтому не влияет на наименьшее значение функции на заданном отрезке. На заданном отрезке функция f(x) возрастает на промежутке [-3; 0] и убывает на промежутке [0; 3]. Значит, наименьшее значение она может принимать только на границах отрезка.
ответ: наименьшее значение функция принимает при x=-3. Значение - -82.
Пр.труда(стр/ч) Время(ч) Объем(стр) 1-я х 1 х 1-я+2-я х+у 5 5х+5у 6х+5у=5/6 1-я х 1/х 1 2-я у 1/у 1
1/12(стр/ч)- пр.труда 1-й писательницы 1/15(стр/ч)-пр.труда 2-й писательницы 1:1/12=за 12 ч. перепечатает рукопись первая писательница 1:1/15=за 15 ч. перепечатает рукопись вторая писательница ответ:12ч.,15ч.
f(-3) = (-3)³ - 8*(-3)² + 17 = -27-72+17 = -82
f(3) = 3³ - 8*(3)² + 17 = 27-72+17 = -28
Наименьшее из них - -82 при x=-3.
2. Определим точки максимума и минимума (экстремума) функции. Для этого вычислим первую производную и найдем ее корни:
f'(x) = 3x²-16x = x(3x-16)
Корни: x=0, x=16/3.
При этом на промежутке от -∞ до 0 первая производная положительна, на отрезке между корнями - отрицательна, и от 16/3 до +∞ - вновь положительна.
Это означает, что на отрезке между корней функция f(x) убывающая, а на лучах вне отрезка [0; 16/3] - возрастающая.
При этом при x=0 функция f(x) имеет локальный максимум (f(x)=17), а при x=16/3 - локальный минимум.
Но корень x=16/3=5 1/3 > 3 находится вне отрезка [-3; 3], поэтому не влияет на наименьшее значение функции на заданном отрезке.
На заданном отрезке функция f(x) возрастает на промежутке [-3; 0] и убывает на промежутке [0; 3]. Значит, наименьшее значение она может принимать только на границах отрезка.
ответ: наименьшее значение функция принимает при x=-3. Значение - -82.
1-я х 1 х
1-я+2-я х+у 5 5х+5у
6х+5у=5/6
1-я х 1/х 1
2-я у 1/у 1
1/12(стр/ч)- пр.труда 1-й писательницы
1/15(стр/ч)-пр.труда 2-й писательницы
1:1/12=за 12 ч. перепечатает рукопись первая писательница
1:1/15=за 15 ч. перепечатает рукопись вторая писательница
ответ:12ч.,15ч.