Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
На фото решения 9, 15 , 25 , 21 , 1 , 2
Задача 7
Треугольник ABC - равнобедренный , а у равнобедренных треугольников углы при основании равны .
Следовательно , < A = < C = 72°
< B = 180 ° - (72° × 2 ) = 36°
ответ : 36 °
Задача 8
Треугольник АBC - равнобедренный , а у равнобедренных треугольников углы при основании равны .
Следовательно, <A = <C = (180° - < B ) : 2 = (180° - 48°) : 2 = 66°
ответ : 66°
Задача 13
x-одна часть
3x - < А , 4x - < B , 5x - < C
3x + 4x + 5x =180°
12x = 180 °
x = 15°
2
3×15= 45° - < A
4 × 15 = 60° - < B
5 × 15 = 75° - < C
ответ : 45° , 60° , 75°
Задача 14
x - < B , 2x - < A , 2x + 10 - < C
x + 2x + 2x + 10 = 180°
5x = 170°
x = 170° : 5
x = 34° - < B
2 × 34° = 68° - < A
68 ° + 10° = 78° - < C
ответ : 34° , 68° , 78°
Задача 19
< F = 180° - (70° + 50° ) = 60°
Т. к. FR - биссектриса , следовательно < DFR = < EFR = 60° ÷ 2 = 30°
Тогда в треугольнике DRF < R = 180° - (50°+30° )= 100°
Т. к. ЕK - биссектриса , следовательно < DEK = 35°
Тогда в треугольнике DEK < EKD = 180° - (50° + 70° ) = 60°
Сумма углов в четырёхугольнике DROK = 360°
Значит < О = 360° - 100° - 50° - 60° = 150°
< О = < ЕOF ( как вертикальные ) = 150°
ответ : 150°
Задача 26
Треугольник ABC - равнобедренный , значит < A = < C
AD - биссектриса , значит
< DAC - x , < C - 2x
x + 2x + 150= 180 °
3x = 30°
x = 10° - DAC
Значит весь < С = 20° = < А
< В = 180° - 20° × 2 = 140°
ответ : 20° , 20° , 140°
Задача 27
NM - биссектриса , значит < PMN = < NMF = 80° : 2 = 40°
< N = 180° - 40° × 2 = 100°
< PNM + < MNF = 180° ( как смежные )
Значит < МNF = 180° - 100° = 80°
ответ : 80°