Чтобы составить уравнение плоскости, зная координаты точки плоскости Н(x0, y0, z0) и вектора нормали плоскости
n = {A; B; C} можно использовать следующую формулу.
A(x - x0) + B(y - y0) + C(z - z0) = 0.
По заданию имеем: x0 = -3, y0 = 0, z0 = 7.
A = 1; B = -1; C = 3.
Получаем:
Чтобы составить уравнение плоскости, зная координаты точки плоскости Н(x0, y0, z0) и вектора нормали плоскости
n = {A; B; C} можно использовать следующую формулу.
A(x - x0) + B(y - y0) + C(z - z0) = 0.
По заданию имеем: x0 = -3, y0 = 0, z0 = 7.
A = 1; B = -1; C = 3.
Получаем:
1(x - (-3)) + (-1)(y - 0) + 3(z - 7) = 0x - y + 3z - 18 = 0.
Пересечение:
- с осью абсцисс оХ:
y=0
z=0
2x=1
х = 1/2.
- с осью ординат оY:
x=0
z=0
-y=1
y=-1.
F(x)=x²+3x+5
F '(x)=2x+3
Пусть a - абсцисса точки касания
F(a)=a²+3a+5
F ' (a)=2a+3
y₁=a²+3a+5+(2a+3)(x-a)=a²+3a+5+2ax+3x-2a²-3a=
=x(2a+3)+(-a²+5) - уравнение касательной.
2) g(x)=x²+4x-3
g ' (x)=2x+4
Пусть c - абсцисса точки касания.
g(c)=c²+4c-3
g ' (c)=2c+4
y₂= c²+4c-3+(2c+4)(x-c)=c²+4c-3+2cx+4x-2c²-4c=
= x(2c+4)+(-c² -3) - уравнение касательной.
3) Так как касательная общая, то
{2a+3=2c+4 {2a-2c=4-3 {2(a-c)=1 {a-c=1/2
{-a²+5= -c²-3 {c²-a²= -3-5 {a² - c² =8 {(a-c)(a+c)=8
{a-c=1/2 {a-c=1/2
{(1/2)*(a+c)=8 {a+c=16
Складываем уравнения системы:
2a=16+ (1/2)
2a=33/2
a=33/4
33/4 -c=1/2
c=33/4 - 1/2
c=31/4
y=(2 * (³³/₄) + 3)x + (5 - (³³/₄)²) = (³³/₂ + 3)x +(5 - ¹⁰⁸⁹/₁₆)=
=³⁹/₂ x - ¹⁰⁰⁹/₁₆=19.5x-63.0625
y=19.5x - 63.0625 - общая касательная
ответ: у=19,5х - 63,0625