Дадим ФИЗИЧЕСКИЙ ответ на эту задачу: Дано: D₁=2 см R₁=1 см D₂= 3 см R₂=1,5 см
m₂ - ?
Предположим, что шары изготовлены из одного и того же материала (у шаров одинаковая плотность ρ, что в условии задачи, к сожалению, не указано) Масса тела определяется по формуле: m=ρ*V а его объем по формуле: V = (4/3)*π*R³
Принцип решения №2: Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений: (1) х+у=30 (2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ. Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.
Дано:
D₁=2 см R₁=1 см
D₂= 3 см R₂=1,5 см
m₂ - ?
Предположим, что шары изготовлены из одного и того же материала (у шаров одинаковая плотность ρ, что в условии задачи, к сожалению, не указано)
Масса тела определяется по формуле:
m=ρ*V
а его объем по формуле:
V = (4/3)*π*R³
Тогда:
m = (4/3)*ρ*π*R³
Имеем:
m₁ = (4/3)*ρ*π*R₁³ (1)
m₂ = (4/3)*ρ*π*R₂³ (2)
Разделим (2) на (1) и после сокращения получаем ВАЖНОЕ правило:
m₂ / m₁ = (R₂/R₁)³
- отношение МАСС шаров равно КУБУ отношения их радиусов.
Подставляем данные:
m₂ / 48 = (1,5 /1)³
m₂ = 48*1,5² = 48*3,375 = 162 г
ответ:
МАССА шара (но не его ВЕС) равна 162 грамма
Принцип решения №2:
Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений:
(1) х+у=30
(2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ.
Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.