Решение: Обозначим одну сторону прямоугольника за а, а другую за в, диагональ за с, тогда: а-в=14 c^2=а^2+в^2 или 26^2=а^2+в^2 Решим систему уравнений: а-в=14 26^2=а^2+в^2 Из первого уравнения а=14+в Подставим данное а во второе уравнение, получим: 676=(14+в)^2+в^2 676=196+28в+в^2+в^2 2в^2+28в-480=0 Чтобы привести биквадратное уравнение в простое квадратное разделим его на 2 и получим: в^2+14в-240=0 в1,2=-14/2+-sqrt(49+240) К сожалению не укладываюсь во времени, перепроверьте и дорешите. Здесь уже легко.
Советую проверить решение! могут быть мелкие ошибки.
Решение: Для начала ищем производную функции: y'=3x^2+12x+9 Затем приравниваем производную к нулю: 3x^2+12x+9=0 Ищем дискриминант: Д=36 Ищем корни квадратного уравнения: x1=-1; x2=-3 Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения: y(-2)=-8+24-18+8=6 y(-1)= -1+6-9+8=4 y(0)=8 y(-3) не принадлежит заданному промежутку Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.
Обозначим одну сторону прямоугольника за а, а другую за в, диагональ за с,
тогда: а-в=14
c^2=а^2+в^2 или 26^2=а^2+в^2
Решим систему уравнений:
а-в=14
26^2=а^2+в^2
Из первого уравнения а=14+в Подставим данное а во второе уравнение, получим: 676=(14+в)^2+в^2
676=196+28в+в^2+в^2
2в^2+28в-480=0 Чтобы привести биквадратное уравнение в простое квадратное разделим его на 2 и получим:
в^2+14в-240=0
в1,2=-14/2+-sqrt(49+240)
К сожалению не укладываюсь во времени, перепроверьте и дорешите. Здесь уже легко.
Решение:
Для начала ищем производную функции:
y'=3x^2+12x+9
Затем приравниваем производную к нулю:
3x^2+12x+9=0
Ищем дискриминант:
Д=36
Ищем корни квадратного уравнения:
x1=-1; x2=-3
Находим значения функции на концах промежутка (если промежуток с квадратными скобками) и в критических точках производной т.е. в корнях квадратного уравнения:
y(-2)=-8+24-18+8=6
y(-1)= -1+6-9+8=4
y(0)=8
y(-3) не принадлежит заданному промежутку
Выбираем наименьшее значение. Если у вас скобки в задании всё таки круглые, то ответ будет 4, а если скобки квадратные, то наименьшим всё равно остается 4.