В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Малой98
Малой98
10.09.2020 17:04 •  Алгебра

Який вираз є одночленом стандартного вигляду? А. 9,51
Б. a+b
В. a³ помножити на а⁵
Г. 5/а (дріб)

Показать ответ
Ответ:
dodmitry
dodmitry
29.03.2023 12:52

Найдем ограниченные линии

Найдем ограниченные линии1=e^x1=e

Найдем ограниченные линии1=e^x1=e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линии

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x)

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣∣

/

0

02

02

02 =e

02 =e 2

02 =e 2 −2−e

02 =e 2 −2−e 0

02 =e 2 −2−e 0 +0=e

02 =e 2 −2−e 0 +0=e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

0,0(0 оценок)
Ответ:
NIKROSO
NIKROSO
15.04.2023 20:13

В решении.

Объяснение:

Решить систему уравнений:

{x² + y² = 40

{x + y = 8

Выразить у через х во втором уравнении, подставить выражение в первое уравнение и вычислить х:

у = 8 - х

х² + (8 - х)² = 40

Раскрыть скобки:

х² + 64 - 16х + х² = 40

2х² - 16х + 24 = 0

Разделить уравнение на 2 для упрощения:

х² - 8х + 12 = 0, квадратное уравнение, ищем корни:

D=b²-4ac = 64 - 48 = 16         √D=4

х₁=(-b-√D)/2a

х₁=(8-4)/2

х₁=4/2

х₁=2;                

х₂=(-b+√D)/2a  

х₂=(8+4)/2

х₂=12/2

х₂=6.

у = 8 - х

у₁ = 8 - х₁

у₁ = 6;

у₂ = 8 - х₂

у₂ = 2.

Решения системы уравнений (2; 6);  (6; 2).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота