а) 9х+2у-4=0 9х+2у-4=0
8х+у-2=0 ⇒ второе умножаем на -2 ⇒ -16х-2у+4=0 складываем
⇒ -7х=0 , х=0, у=2
б) 5u+7v+3=0 -10u+14v+6=0
10u-v+6=0 ⇒ первое уравнение умножаем на -2 ⇒ 10u-v+6=0
⇒складываем ⇒ 13v=-12, v = - 12/13, u= 9/13
a) 4х-3у=8 , 8х-6у=9.
из первого выражаем х=(8+3у)/4, подставляем во второе
(8+3у)*8/4 -6у=9, ⇒решений нет!
б) 0,5х-у=0,5 , х-2у=1;
из первого выражаем у=0,5х-0,5
подставляем во второе
х-х+1=1
у,х∈R
* * * * * * * * * * * * * * * * * * * * * * * * * * *
ответ: а) F(x) = x³/3 -9 ; б) F(x) = sin(x)+(32-√3)/2 .
Найти первообразную функции y=f(x), график которой проходит через данную точку
а) y=x² ; D(3;0)
б) y=2cos²x/2-1 ; M(π/3; 16)
Объяснение:
а) F(x) = ∫ydx = ∫ x²dx = x³/3+ C
т.к. точка D(3;0) ∈ гр. F(x) , то 0 = 3³/3+ C ⇒ C = - 9 , значит F(x) = x³/3 -9 .
б) F(x) = ∫ydx =∫( 2cos²(x/2) - 1 )dx = ∫cos(x)dx = sin(x)+C
т.к. точка M(π/3; 16) ∈ гр. F(x) , то 16 = sin(π/3)+ C ⇒C =16-√3 /2=(32-√3)/2 значит F(x) = sin(x)+(32-√3)/2 .
* * *cos²α =(1+cos2α) / 2 * * *
! 2cos²(x/2) - 1=cos²(x/2) - ( 1-cos²(x/2) ) =cos²(x/2)-sin²(x/2) =cos2*x/2 =cosx
а) 9х+2у-4=0 9х+2у-4=0
8х+у-2=0 ⇒ второе умножаем на -2 ⇒ -16х-2у+4=0 складываем
⇒ -7х=0 , х=0, у=2
б) 5u+7v+3=0 -10u+14v+6=0
10u-v+6=0 ⇒ первое уравнение умножаем на -2 ⇒ 10u-v+6=0
⇒складываем ⇒ 13v=-12, v = - 12/13, u= 9/13
a) 4х-3у=8 , 8х-6у=9.
из первого выражаем х=(8+3у)/4, подставляем во второе
(8+3у)*8/4 -6у=9, ⇒решений нет!
б) 0,5х-у=0,5 , х-2у=1;
из первого выражаем у=0,5х-0,5
подставляем во второе
х-х+1=1
у,х∈R
* * * * * * * * * * * * * * * * * * * * * * * * * * *
ответ: а) F(x) = x³/3 -9 ; б) F(x) = sin(x)+(32-√3)/2 .
Найти первообразную функции y=f(x), график которой проходит через данную точку
а) y=x² ; D(3;0)
б) y=2cos²x/2-1 ; M(π/3; 16)
Объяснение:
а) F(x) = ∫ydx = ∫ x²dx = x³/3+ C
т.к. точка D(3;0) ∈ гр. F(x) , то 0 = 3³/3+ C ⇒ C = - 9 , значит F(x) = x³/3 -9 .
б) F(x) = ∫ydx =∫( 2cos²(x/2) - 1 )dx = ∫cos(x)dx = sin(x)+C
т.к. точка M(π/3; 16) ∈ гр. F(x) , то 16 = sin(π/3)+ C ⇒C =16-√3 /2=(32-√3)/2 значит F(x) = sin(x)+(32-√3)/2 .
* * *cos²α =(1+cos2α) / 2 * * *
! 2cos²(x/2) - 1=cos²(x/2) - ( 1-cos²(x/2) ) =cos²(x/2)-sin²(x/2) =cos2*x/2 =cosx