Если чило делится на 5, то оно заканчивается на 5 или на 0. если число переписали в обратном порядке и получили снова четырехзначное число, то первоначальное число заканчивалось на 5. Обозначим первые 3 цифры первоначально числа x, y, и z. 1≤x≤9, 0≤y≤9,0≤z≤9 первоначальное число 1000x+100y+10z+5 переписанное в обратном порядке 5000+100z+10y+x получаеи уравнение 1000x+100y+10z+5-(5000+100z+10y+x)=3627 1000x+100y+10z-5000-100z-10y-x=3622 из этого можно сделать вывод, что 0-x=7, x =-2 -не подходит другая возможность 10-x=2, x=8 8000+100y+10z-5000-100z-10y-8=3622 3000+100y+10z-100z-10y=3630 100y+10z-100z-10y=630 10y+z-10z-y=63 10(y-z)+(z-y)=63 y-z=7 z=0 y=7 тогда число 8705 z=1 y=8 тогда число 8815 z=2 y=9 тогда число 8925
если число переписали в обратном порядке и получили снова четырехзначное число, то первоначальное число заканчивалось на 5.
Обозначим первые 3 цифры первоначально числа x, y, и z.
1≤x≤9, 0≤y≤9,0≤z≤9
первоначальное число
1000x+100y+10z+5
переписанное в обратном порядке
5000+100z+10y+x
получаеи уравнение
1000x+100y+10z+5-(5000+100z+10y+x)=3627
1000x+100y+10z-5000-100z-10y-x=3622
из этого можно сделать вывод, что 0-x=7, x =-2 -не подходит
другая возможность 10-x=2, x=8
8000+100y+10z-5000-100z-10y-8=3622
3000+100y+10z-100z-10y=3630
100y+10z-100z-10y=630
10y+z-10z-y=63
10(y-z)+(z-y)=63
y-z=7
z=0 y=7 тогда число 8705
z=1 y=8 тогда число 8815
z=2 y=9 тогда число 8925
ответ: три варианта: 8705, 8815 и 8925
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально