1) х(х²-16) =0 пока мы приравниваем нулю,чтобы решить х(х-4)(х+4) =0 х1=0 х-4=0 отсюда х2= 4 х+4=0 отсюда х3= -4 рисуем луч, отмечаем эти точки
- 404⇒ Теперь возьми из интервала от минус ∞ до -4 любое значение и подставь его в данное первое неравенство вместо х, например х= -5 проверяем: (-5)³ - 16(-5)= -125+80= -45 <0 - верно, значит этот интервал подходит, далее смотрим второй интервал, возьми точку х= - 1, подставь в нерав-во (-1)³-16(-1)= -1 +16=15 <0 неверно! второй интервал не подходит,далее, третий интервал смотри от 0 до 4 возьми точку х=1 подставь её 1-16= -15< 0 -верно, последний интервал от 4 до плюс+∞ Пусть х= 5 подставь 5³-16·5=125-80< 0 неверно значит ответ такой : Х⊂от - ∞до -4∪от 0 до 4, не включая точки -4,0,4 ,так как стоит строгий знак неравенства < ( без равно)
-0,500,5⇒ Точно также из четырех интервалов бери пробные точки и подставь в нерав-во 4х³-х>0 Интервалы, в которых пробные точки обратят неравенство в верное и будут объединенным решением , возьми пробные точки, например -1, -0,1 0,1; 1( это с первого по четвертый интервал)
х(х-4)(х+4) =0
х1=0 х-4=0 отсюда х2= 4 х+4=0 отсюда х3= -4
рисуем луч, отмечаем эти точки
- 404⇒
Теперь возьми из интервала от минус ∞ до -4 любое значение и подставь его в данное первое неравенство вместо х, например х= -5
проверяем: (-5)³ - 16(-5)= -125+80= -45 <0 - верно, значит этот интервал подходит,
далее смотрим второй интервал, возьми точку
х= - 1, подставь в нерав-во (-1)³-16(-1)= -1 +16=15 <0 неверно!
второй интервал не подходит,далее,
третий интервал смотри от 0 до 4
возьми точку х=1 подставь её 1-16= -15< 0 -верно,
последний интервал от 4 до плюс+∞ Пусть х= 5
подставь 5³-16·5=125-80< 0 неверно
значит ответ такой :
Х⊂от - ∞до -4∪от 0 до 4, не включая точки -4,0,4 ,так как стоит строгий знак неравенства < ( без равно)
2) 4х³-х>0
х( 4х²-1)=0
х(2х-1)(2х+1)=0
Х1=0 2х-1=0 значитХ2= 1/2=0,5 2х+1=0 Х3= - 0,5
-0,500,5⇒ Точно также из четырех интервалов бери пробные точки и подставь в нерав-во 4х³-х>0
Интервалы, в которых пробные точки обратят неравенство в верное и будут объединенным решением , возьми пробные точки, например -1, -0,1 0,1; 1( это с первого по четвертый интервал)
"Дана функция y=x2−4. Построй график функции y=x2−4.
a) Координаты вершины параболы: ( ; )
(в пунктах б), в) и г) вместо −∞, пиши «−Б»; вместо +∞, пиши «+Б»).
б) При каких значениях аргумента значения функции отрицательны?
( ; ). в) При каких значениях аргумента функция возрастает? [ ; ).
г) При каких значениях аргумента функция убывает? ( ; ]
(Сравни свой график с представленным в шагах решения).
Объяснение:
a) Координаты вершины параболы: х₀=0/2=0 , у₀=0-4=-4 ; (0 ;-4 ) .
б) у<0 при х²-4<0
-------(+)------(-2)--------(-)--------(2)------(+) ,при х∈ (-2;2)
в) Функция возрастает при х≥0.
г) Функция убывает при х≤0.