Яна тест, в котором за каждый ответ «да» добавлялось но за каждый ответ «нет» вычиталось Всего она ответила на 30 вопросов. Сколько раз Яна отвечала «да», если в сумме набрала
Пусть ширина прямоугольника равна Х. Тогда его длина15 - Х У нового прямоугольника ширина Х + 5, а длина 15 - Х - 3 = 12 - Х Поскольку площадь прямоугольника уменьшилась на 8 см², получаем уравнение Х * (15 - Х) - (Х + 5) * (12 - Х) = 8 15 * Х - Х² - 12 * Х + Х² - 60 + 5 * Х - 8 = 0 8 * Х - 68 = 0 Х = 8,5 Итак, ширина прямоугольника была 8,5 см, длина 15 - 8,5 = 6,5 см, а площадь 8,5 * 6,5 = 55,25 см².
После трансформации ширина прямоугольника стала 8,5 + 5 = 13,5 см, длина 6,5 - 3 = 3,5, а площадь 13,5 * 3,5 = 47,25 см², то есть уменьшилась на 55,25 - 47,25 = 8 см²...
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
У нового прямоугольника ширина Х + 5, а длина 15 - Х - 3 = 12 - Х
Поскольку площадь прямоугольника уменьшилась на 8 см², получаем уравнение
Х * (15 - Х) - (Х + 5) * (12 - Х) = 8
15 * Х - Х² - 12 * Х + Х² - 60 + 5 * Х - 8 = 0
8 * Х - 68 = 0
Х = 8,5
Итак, ширина прямоугольника была 8,5 см, длина 15 - 8,5 = 6,5 см, а площадь 8,5 * 6,5 = 55,25 см².
После трансформации ширина прямоугольника стала 8,5 + 5 = 13,5 см, длина 6,5 - 3 = 3,5, а площадь 13,5 * 3,5 = 47,25 см², то есть уменьшилась на 55,25 - 47,25 = 8 см²...
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант:
2(d+b)+2=6n максимально возможное 30d+b=14
Подбираем максимальное:
а=9
d=8
b=14-8=6
c=7
9678-8769=909
ответ 9678