Пусть a - одно число. Тогда два других будут равны (a + 1) и (a + 2). Зная, что сумма квадратов данных чисел равна 1589, получим уравнение: a² + (a + 1)² + (a + 2)² = 1589 a² + a² + 2a + 1 + a² + 4a + 4 = 1589 3a² + 6a + 5 = 1589 3a² + 6a - 1584 a² + 2a - 528 = 0 a² + 2a + 1 - 529 = 0 (a + 1)² - 23² = 0 (a + 1 - 23)(a + 1 + 23) = 0 a = 22 и a = -24 a = -24 не уд. условию задачи (число натуральное). Значит, наименьшее из чисел равно 22. 1) 22 + 1 = 23 - второе число 2) 23 + 1 = 24 - наибольшее из чисел ответ: 22; 23; 24.
a² + (a + 1)² + (a + 2)² = 1589
a² + a² + 2a + 1 + a² + 4a + 4 = 1589
3a² + 6a + 5 = 1589
3a² + 6a - 1584
a² + 2a - 528 = 0
a² + 2a + 1 - 529 = 0
(a + 1)² - 23² = 0
(a + 1 - 23)(a + 1 + 23) = 0
a = 22 и a = -24
a = -24 не уд. условию задачи (число натуральное).
Значит, наименьшее из чисел равно 22.
1) 22 + 1 = 23 - второе число
2) 23 + 1 = 24 - наибольшее из чисел
ответ: 22; 23; 24.
б) х/(х-4)^2 = x(x+4)/[(x-4)^2*(x+4])] = (x^2+4x)/[(x-4)^2*(x+4])]
7/(х^2-16) = 7/[(x-4)(x+4)] = 7(x-4)/[(x-4)^2*(x+4])] = (7x-28)/[(x-4)^2*(x+4])];
в) 5/(х+1) = 5(x-2)/[(x-2)(x+1)] = (5x-10)/[(x-2)(x+1)]
7/(х-2) = 7(x+1)/[(x-2)(x+1)] = (7x+7)/[(x-2)(x+1)];
г) 4/(х-6) и х/(6-х) = -x/(x-6);
д) х/(х+5)^2 = x(x-5)/[(х+5)^2*(x-5)] = (x^2-5x)/[(х+5)^2*(x-5)]
5/(x^2-25) = 5/[(х+5)*(x-5)] = 5(x+5)/[(х+5)^2*(x-5)] = (5x+25)/[(х+5)^2*(x-5)];
е) 4/(х-3) = 4(x+2)/[(x-3)(x+2)] = (4x+8)/[(x-3)(x+2)]
2/(х+2) = 2(x-3)/[(x-3)(x+2)] = (2x-6)/[(x-3)(x+2)];
ж) х/(х-8) = -3x/(24-3x) и 4х/(24-3х);
з)x/(6-x)^2; - не с чем сравнивать
и)11/(3x+4) = 11(2x-3)/[(2x-3)(3x+4)] = (22x-33)/[(2x-3)(3x+4)]
12/(2х-3) = 12(3x+4)/[(2x-3)(3x+4)] = (36x+48)/[(2x-3)(3x+4)];
к)х/(х-7) = -3x/(21-3x) и 11/(21-3х);
л)x/(7-x)^2 = x(x+7)/[(x-7)^2*(x+7)] = (x^2+7x)/[(x-7)^2*(x+7)]
4/(x^2-49) = 4(x-7)/[(x-7)^2*(x+7)] = (4x-28)/[(x-7)^2*(x+7)];
м)13/(3х-4) = 13(2x+3)/[(3x-4)(2x+3)] = (26x+39)/[(3x-4)(2x+3)]
11/(2х+3) = 11(3x-4)/[(3x-4)(2x+3)] = (33x-44)/[(3x-4)(2x+3)].