Является ли множество L = {(x1, x2, x3)} векторов за- данного вида линейным под в R^3? Если да, то найти базис и размерность этого под Дополнить базис под до базиса всего а) ( 2а-2; -3а+2b; 2a+b) б) ( 2a-2b; - 3a+2b; 2a+b)
Сейчас есть две системы наименования чисел – английская и американская.
Американская – довольно простая. Названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион, что значит тысяча. Далее получаются числа: триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Такую систему используют в США, Канаде, России и Франции.
Английская система более распространенная в мире. Ее используют в Испании и Великобритании, а так же в ряде других стран. Здесь названия стоятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард». То есть после триллиона идет триллиард, после квадриллион, квадриллиард и так далее. Получается, что по английской и американской системам одни и те же большие числа называются по-разному.
В русский язык из английской системы пришел только миллиард (10 9), который американцы называют биллионом. Иногда в России употребляют слово триллиард, то есть 1000 триллионов или квадриллион.
Самое большое число, которое применяется в математическом доказательстве, это Число Грэма. Его использовали впервые в 1977 году в доказательстве оценки в теории Рамсея. Оно выражено в особой 64-уровневой системе, поскольку связано с бихроматическими гиперкубами. Вывел систему Кнут в 1978 году. Он придумал понятие сверхстепень и предложил записывать ее стрелками вверх. В итоге, число Грэма G63 или просто G и является самым большим числом в мире. Оно даже попало в Книгу рекордов Гиннеса. Последние 50 цифр числа Грэма — это ...03222348723967018485186439059104575627262464195387.
Какое же число является самым большим в мире?
Сейчас есть две системы наименования чисел – английская и американская.
Американская – довольно простая. Названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион, что значит тысяча. Далее получаются числа: триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Такую систему используют в США, Канаде, России и Франции.
Английская система более распространенная в мире. Ее используют в Испании и Великобритании, а так же в ряде других стран. Здесь названия стоятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард». То есть после триллиона идет триллиард, после квадриллион, квадриллиард и так далее. Получается, что по английской и американской системам одни и те же большие числа называются по-разному.
В русский язык из английской системы пришел только миллиард (10 9), который американцы называют биллионом. Иногда в России употребляют слово триллиард, то есть 1000 триллионов или квадриллион.
Самое большое число, которое применяется в математическом доказательстве, это Число Грэма. Его использовали впервые в 1977 году в доказательстве оценки в теории Рамсея.
Оно выражено в особой 64-уровневой системе, поскольку связано с бихроматическими гиперкубами. Вывел систему Кнут в 1978 году. Он придумал понятие сверхстепень и предложил записывать ее стрелками вверх. В итоге, число Грэма G63 или просто G и является самым большим числом в мире. Оно даже попало в Книгу рекордов Гиннеса. Последние 50 цифр числа Грэма — это ...03222348723967018485186439059104575627262464195387.
x² +px +q =0 .
По условию p, q ∈ Q ( Q -множество рациональных чисел).
По теореме Виета : { x₁ +x₂ = - p ; x₁ *x₂ =q ⇔{ p = -(x₁ +x₂) ; q =x₁ *x₂.
* * * для того, чтобы p, q были рациональными корни должны иметь вид : x₁ =a +√b ; x₂ =a -√b , √b -иррациональное число * * *
---
а)
x₂ = √3 ⇒ x₂ = -√3.
p = -( x₁ +x₂) =0 ;
q =x₁ *x₂ =√3 *(-√3) = -3 .
x² -3 = 0 .
---
б)
x₁ = -1+√3⇒x₂ = -1-√3 . || иначе x₂ = -(√3+1) ||
p = -(x₁+x₂) = - ( ( -1+√3)+( -1-√3) )=2 ;
q =x₁ *x₂ = (√3-1)* (-(√3 +1) ) = -((√3) ² -1)= -(3-1) =-2 .
x² +2x -2 = 0 .
---
в)
x₁ = 2-√5 ⇒x₂ =2+√5
p= -(x₁+x₂) = - ( 2-√5+2+√5 )= -4 ;
q =x₁ *x₂ = ( 2-√5)*(2+√5) =2² -(√5)² =4-5 = -1 .
x² -4x -1 =0 .