1) f(x) = sinx - x f'(x) = cosx - 1 f'(x) ≥ 0 cosx - 1 ≥ 0 cosx ≥ 1 Неравенство обращается в равенство, т.к. cosx ∈ [-1; 1]. Отсюда делаем вывод, что функция убывает на всей своей области определения. ответ: убывает на R.
2) f(x) = √(x² - 1) u = x² - 1, v = √u f'(x) = u'·v' = (x² - 1)'·(√u)' = 2x·1/2√u = x/√(x² - 1) f'(x) ≥ 0 x/[√x² - 1) ≥ 0 Знаменатель всегда больше нуля, т.к. подкоренное выражение - число неотрицательное. Найдём D(y): x² - 1 ≥ 0 x ∈ (-∞; -1] U [1; +∞). Решаем далее неравенство: x ≥ 0. С учётом области определения получаем, что при x ∈ [1; +∞) функция будет возрастать (т.к. неравенство будет выполняться), а на (-∞; 1] функция будет убывать (т.к. неравенство не будет выполняться). ответ: убывает на (-∞; -1], возрастает на [1; +∞).
f'(x) = cosx - 1
f'(x) ≥ 0
cosx - 1 ≥ 0
cosx ≥ 1
Неравенство обращается в равенство, т.к. cosx ∈ [-1; 1].
Отсюда делаем вывод, что функция убывает на всей своей области определения.
ответ: убывает на R.
2) f(x) = √(x² - 1)
u = x² - 1, v = √u
f'(x) = u'·v' = (x² - 1)'·(√u)' = 2x·1/2√u = x/√(x² - 1)
f'(x) ≥ 0
x/[√x² - 1) ≥ 0
Знаменатель всегда больше нуля, т.к. подкоренное выражение - число неотрицательное.
Найдём D(y):
x² - 1 ≥ 0
x ∈ (-∞; -1] U [1; +∞).
Решаем далее неравенство:
x ≥ 0.
С учётом области определения получаем, что при x ∈ [1; +∞) функция будет возрастать (т.к. неравенство будет выполняться), а на (-∞; 1] функция будет убывать (т.к. неравенство не будет выполняться).
ответ: убывает на (-∞; -1], возрастает на [1; +∞).
у = x² - 2x - 8
y = (x² - 2x + 1) - 1 - 8
y = (x - 1)² - 9
График функции - квадратичная парабола, ветви направлены вверх.
Координаты вершины из уравнения y = (x - 1)² - 9
x₀ = 1; y₀ = -9.
Нули функции
x² - 2x - 8 = 0 ⇔ (x - 4)(x + 2) = 0
1) x - 4 = 0; x₁ = 4;
2) x + 2 = 0; x₂ = -2
Точка пересечения с осью OY для построения графика
x = 0; y = x² - 2x - 8 = 0² - 2*0 - 8 = -8
График в приложении.
а) x = 3; y = 3² - 2*3 - 8 = 9 - 6 - 8 = -5
A (3; -5)
б) y = 3;
x² - 2x - 8 = 3 ⇔ x² - 2x - 11 = 0
D/4 = (b/2)² - ac = 1 + 11 = 12
≈ 4,5
≈ -2,5
B (-2,5; 3); C(4,5; 3)
в) Нули функции x₁ = 4; x₂ = -2
Точки D (-2; 0); F(4; 0)
Промежутки знакопостоянства функции
y > 0 при x ∈ (-∞; -2) ∪ (4; +∞)
y < 0 при x ∈ (-2; 4)
г) Функция возрастает при x ∈ [1; +∞)
============================
Графики у = 1/3 x²; у = 6x - 15
Для поиска точки пересечения нужно уравнять формулы по y
1/3 x² = 6x - 15 | * 3
x² = 18x - 45 ⇔ x² - 18x + 45 = 0
Дискриминант положительный, значит, графики имеют 2 точки пересечения.
1) x₁ = 15; y₁ = 6*15 - 15 = 5*15 = 75
2) x₂ = 3; y₂ = 6*3 - 15 = 18 - 15 = 3
ответ: точки пересечения графиков (15; 75); (3; 3)