З двох міст, відстань між якими дорівнює 60 км, назустріч один одному виїхали два велосипедисти і зустрілися на середині дороги. Яка швидкість кожного велосипедиста, якщо перший виїхав на 1 годину швидше вiд другого і рухався із швидкістю на 5 км/год меншою, i ніж швидкість другого велосипедиста? Треба скласти систему рівняння.
АН=8
Объяснение:
В треугольнике АВС известно:
АС = ВС;
АВ = 10;
cos А = 0,6.
Найдем высоту АН.
Так как, треугольник равнобедренный, тогда cos A = cos B = 0.6.
Рассмотрим прямоугольный треугольник АНВ с прямым углом Н.
sin B = √(1 - cos^2 B) = √(1 - 0.6^2) = √(1 - 0.36) = √0.64 = 0.8;
sin B = AH/AB;
Выразим отсюда высоту АН.
АН = АВ * sin a;
Подставим известные значения в формулу и вычислим значение высоты треугольника АВС.
АН = 10 * 0.8 = 8;
В итоге получили, что высота треугольника АВС равна АН = 8.
ответ: АН = 8.
а1 = 2 - количество очков, набранных за первую минуту игры,
а2 = 4 - количество очков, набранных за вторую минуту,
а3 = 8 - количество очков, набранных за третью минуту,
.......
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:
Sn=b1(q^n-1)/q-1, q не равно 1.
К тому же, эта сумма должна быть не меньше 10 000.
Подставляя известные величины в формулу, получим такое неравенство:
2(2^n-1)/2-1>10 000
2^n-1>5000
2^n>5001
Ничего не остается, как вручную подобрать n.
При n = 13 выражение 2n будет больше 5001 (2^13 = 8192). Это значит, что через 13 минут Митя наберет больше 10 000 очков и перейдет на следующий уровень.