з двох селищ, відстань між якими дорівнює 36 км, одночасно вирушили назустріч один одному два пішоходи й зустрілися через 3 год після початку руху. Знайдіть швидкість кожного пішохода, якщо відомо, що перший пiшохід проходить за 5 год на 25 км більше, ніж другий за 2 год.
№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
С этого метода постановки практически всегда можно решить систему уравнений.
Алгоритм решения системы двух уравнений с двумя переменными методом подстановки:
1. из любого (обычно более уравнения системы выразить одно неизвестное через другое,
например, x через y из первого уравнения системы;
(Чтобы выразить неизвестное, нужно выполнить два условия:
1-перенести неизвестное, которое хотим выразить, в левую часть уравнения;
2- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице. )
2. подставить полученное выражение в другое (второе) уравнение системы вместо x;
3. решить уравнение с одним неизвестным относительно y (найти y);
4. подставить найденное на третьем шаге значение y в уравнение,
полученное на первом шаге, вместо y и найти x;
5. записать ответ мой ответ в лучшие)))