З міста а до міста в виїхав мотоцикліст. Через 18 хв за ним виїхав автомобіль, який проїхавши 40 км, наздогнав його. Знайдіть швидкість кожного, якщо швидкість автомобіля на 30 км/год більша за швидкість мотоцикліста
1. См графическое решение. Строим график у=2х+5х³ - кубическая парабола возрастающая на (-∞;∞) и график у=х⁸-4х⁴+4 Находим y`=8x⁷-16x³ y`=0 8x⁷-16x³=0 8x³(x⁴-2)=0 x=0 x= - √(√2) x=√(√2) - точки возможных экстремумов х= - √(√2) и х=√(√2) - точки минимума, производная при переходе через эти точки меняет знак с - на +. у(-√(√2))=у(√(√2))=0 х=0- точка максимума, производная при переходе через точку меняет знак с + на -. у(0)=4
Одна точка пересечения х≈0,75 у=3 Найдем абсциссы точек пересечения графика у=х⁸-4х⁴+4 с прямой у=3. Решим уравнение: х⁸-4х⁴+4=3 Замена переменной х⁴=t t²-4t+1=0 D=16-4=12 t=(4-2√3)/2 =2-√3 или t=2+√3
x⁴=2-√3 или х⁴=2+√3 х²=√(2-√3) х₂=√(2+√3) х₁=-√(√(√(2-√3))) или х₂=√(√(√(2-√3))) или х₃=-√(√(√(2+√3))) или х₄=√(√(√(2+√3)))
См. рисунок. х₂=√(√(√2(-√3))) - корень уравнения.
О т в е т.√(√(√(2-√3)))=
2. 3²⁵⁶-1=(3¹²⁸)²-1²=(3¹²⁸+1)(3¹²⁸-1)=(3¹²⁸+1)·((3⁶⁴)²-1²)= (3¹²⁸+1)·(3⁶⁴+1)·(3⁶⁴-1)=...= =(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)(3²-1)= =(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8 Уравнение примет вид: 8·(3²+1)·(3⁴+1)·(3⁸+1)·(3¹⁶+1)·(3³²+1)·(3⁶⁴+1)·(3¹²⁸+1)= =(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8 имеет корень х=1 О т в е т. х=1
График: парабола (вид y = ax²+bx+c). Ветви направлены вверх (a > 0). Точка пересечения о осью OY: 16 (c = 16). x вершина: -b/(2a) -12/6 = -2 y вершина: y=3(-2)²+12(-2)+16 = 4 Координаты вершины параболы: (-2;4).
Нули функции: 3x²+12x+16 = 0 D = 144 - 192 = -48 => D < 0. Отсюда: пересечений с осью OX нет.
Область определения D(y): (-∞;+∞) Область значения E(y): [-2;+∞)
Функция имеет положительные значения на промежутке: (-∞;+∞) Функция имеет отрицательные значения на промежутке: -
Функция возрастает на промежутке [-2;∞) Функция убывает на промежутке (-∞;-2]
Строим график у=2х+5х³ - кубическая парабола возрастающая на (-∞;∞)
и график у=х⁸-4х⁴+4
Находим y`=8x⁷-16x³
y`=0
8x⁷-16x³=0
8x³(x⁴-2)=0
x=0 x= - √(√2) x=√(√2) - точки возможных экстремумов
х= - √(√2) и х=√(√2) - точки минимума, производная при переходе через эти точки меняет знак с - на +.
у(-√(√2))=у(√(√2))=0
х=0- точка максимума, производная при переходе через точку меняет знак с + на -.
у(0)=4
Одна точка пересечения
х≈0,75
у=3
Найдем абсциссы точек пересечения графика у=х⁸-4х⁴+4 с прямой у=3.
Решим уравнение:
х⁸-4х⁴+4=3
Замена переменной
х⁴=t
t²-4t+1=0
D=16-4=12
t=(4-2√3)/2 =2-√3 или t=2+√3
x⁴=2-√3 или х⁴=2+√3
х²=√(2-√3) х₂=√(2+√3)
х₁=-√(√(√(2-√3))) или х₂=√(√(√(2-√3))) или х₃=-√(√(√(2+√3))) или х₄=√(√(√(2+√3)))
См. рисунок.
х₂=√(√(√2(-√3))) - корень уравнения.
О т в е т.√(√(√(2-√3)))=
2.
3²⁵⁶-1=(3¹²⁸)²-1²=(3¹²⁸+1)(3¹²⁸-1)=(3¹²⁸+1)·((3⁶⁴)²-1²)=
(3¹²⁸+1)·(3⁶⁴+1)·(3⁶⁴-1)=...=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)(3²-1)=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8
Уравнение примет вид:
8·(3²+1)·(3⁴+1)·(3⁸+1)·(3¹⁶+1)·(3³²+1)·(3⁶⁴+1)·(3¹²⁸+1)=
=(3¹²⁸+1)(3⁶⁴+1)(3³²+1)(3¹⁶+1)(3⁸+1)(3⁴+1)(3²+1)·8
имеет корень х=1
О т в е т. х=1
График: парабола (вид y = ax²+bx+c).
Ветви направлены вверх (a > 0).
Точка пересечения о осью OY: 16 (c = 16).
x вершина: -b/(2a)
-12/6 = -2
y вершина: y=3(-2)²+12(-2)+16 = 4
Координаты вершины параболы: (-2;4).
Нули функции: 3x²+12x+16 = 0
D = 144 - 192 = -48 => D < 0. Отсюда: пересечений с осью OX нет.
Область определения D(y): (-∞;+∞)
Область значения E(y): [-2;+∞)
Функция имеет положительные значения на промежутке: (-∞;+∞)
Функция имеет отрицательные значения на промежутке: -
Функция возрастает на промежутке [-2;∞)
Функция убывает на промежутке (-∞;-2]