З пункта А до пункту В відстань між якими дорівнює 15 км одночасно вийшли два пішоходи , швидкість одного з пішоходів на 1 км за год менша, і тому він прибув до пункту В на 45 хв пізніше ,знайдіть швидкості обох пішоходів
Раскрывая скобки и приведя подобные члены, приходим к уравнению x⁴+11*x³+46*x²+88*x+64=0. Это уравнение является приведённым, так как коэффициент перед членом с наивысшей степенью x равен 1. Поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 64. Целыми делителями числа 64 являются +1,-1,+2,-2,+4,-4,+8,-8,+16,-16,+32,-32, +64,-64. Но очевидно, что положительные делители не могут быть решениями уравнения, так как x⁴+11*x³+46*x²+88*x+64>0 при x>0. Подставляя в уравнение отрицательные делители, находим, что число x=-2 является одним из корней уравнения. Разделив многочлен x⁴+11*x³+46*x²+88*x+64 на двучлен x-(-2)=x+2, получаем многочлен x³+9*x²+28*x+32. Значит, x⁴+11*x³+46*x²+88*x+64=(x+2)*(x³+9*x²+28*x+32)=0. Уравнение x³+9*x²+28*x+32=0 тоже приведённое, поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 32. Но так как при x>0 x³+9*x²+28*x+32>0, то корни нужно искать лишь среди отрицательных делителей. Отрицательными делителями числа 32 являются числа 32 являются числа -1,-2,-4,-8,-16,-32. Подставляя их в уравнение, находим x=-4 - один корень данного уравнения (и соответственно второй корень исходного уравнения. Деля многочлен x³+9*x²+28*x+32 на двучлен x-(-4)=x+4, получаем квадратный трёхчлен x²+5*x+8. Значит, x³+9*x²+28*x+32=(x+4)*(x²+5*x+8). Дискриминант уравнения x²+5*x+8 D=5²-4*1*8=-7, поэтому действительных решений это уравнение не имеет. Значит, исходное уравнение имеет лишь два действительных корня: x1=-2 и x2=-4. ответ: x1=-2, x2=-4.
Рассмотрим левую часть уравнения:log2(x^2+2). Видим, что x^2+2 >=2 всегда. Значит, log2(x^2+2) >=1 всегда. Ну, например, пусть подлогарифмическое выражение равно 2(берем по минимуму), тогда log2(2)=1. Рассмотрим правую часть: -1<=cos pix<=1 всегда. Посмотрим, что же может быть общего между левой и правой частью:и та, и другая =1. Сейчас проще поработать с логарифмом: приравняем левую часть к единице: log2(x^2+2)=1; log2(x^2+2)=log2(2); x^2+2=2; x^2=0; x=0. А теперь подставим в правую часть ноль вместо Х и приравняем к единице и посмотрим, выполнится ли равенство: cos pi*0=1 cos 0=1 Да, все решилось. Значит, решением уравнения является х=0.
x⁴+11*x³+46*x²+88*x+64=0. Это уравнение является приведённым, так как коэффициент перед членом с наивысшей степенью x равен 1. Поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 64. Целыми делителями числа 64 являются +1,-1,+2,-2,+4,-4,+8,-8,+16,-16,+32,-32, +64,-64. Но очевидно, что положительные делители не могут быть решениями уравнения, так как x⁴+11*x³+46*x²+88*x+64>0 при x>0. Подставляя в уравнение отрицательные делители, находим, что число x=-2 является одним из корней уравнения. Разделив многочлен x⁴+11*x³+46*x²+88*x+64 на двучлен x-(-2)=x+2, получаем многочлен x³+9*x²+28*x+32. Значит,
x⁴+11*x³+46*x²+88*x+64=(x+2)*(x³+9*x²+28*x+32)=0. Уравнение x³+9*x²+28*x+32=0 тоже приведённое, поэтому корни этого уравнения могут быть среди делителей его свободного члена, т.е. 32. Но так как при x>0 x³+9*x²+28*x+32>0, то корни нужно искать лишь среди отрицательных делителей. Отрицательными делителями числа 32 являются числа 32 являются числа -1,-2,-4,-8,-16,-32. Подставляя их в уравнение, находим x=-4 - один корень данного уравнения (и соответственно второй корень исходного уравнения. Деля многочлен
x³+9*x²+28*x+32 на двучлен x-(-4)=x+4, получаем квадратный трёхчлен x²+5*x+8. Значит, x³+9*x²+28*x+32=(x+4)*(x²+5*x+8). Дискриминант уравнения x²+5*x+8 D=5²-4*1*8=-7, поэтому действительных решений это уравнение не имеет. Значит, исходное уравнение имеет лишь два действительных корня: x1=-2 и x2=-4.
ответ: x1=-2, x2=-4.
Видим, что x^2+2 >=2 всегда. Значит, log2(x^2+2) >=1 всегда.
Ну, например, пусть подлогарифмическое выражение равно 2(берем по минимуму), тогда log2(2)=1.
Рассмотрим правую часть: -1<=cos pix<=1 всегда.
Посмотрим, что же может быть общего между левой и правой частью:и та, и другая =1.
Сейчас проще поработать с логарифмом: приравняем левую часть к единице: log2(x^2+2)=1; log2(x^2+2)=log2(2); x^2+2=2; x^2=0; x=0.
А теперь подставим в правую часть ноль вместо Х и приравняем к единице и посмотрим, выполнится ли равенство:
cos pi*0=1
cos 0=1
Да, все решилось. Значит, решением уравнения является х=0.