На каждом кубике выпадает любой из 6 вариантов (1, 2, 3, 4, 5, 6), по правилу умножения всего вариантов выпадения очков на двух кубиках 6 * 6 = 36 - это общее число исходов.
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
n^3 - 3n^2m + 3nm^2 - m^3
2) (-2+k)^3 = (k-2)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
k^3 - 3k^2 * 2 + 3k * 2^2 - 2^3 = k^3 - 6k^2 + 12k - 8
3) (-x-y)^3 = -(x+y)^3
Вспоминаем формулу сокращенного умножения:
(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Получаем:
(-x-y)^3 = -((x+y)^3) = -(x^3 + 3x^2y + 3xy^2 + y^3) =
= -x^3 - 3x^2y - 3xy^2 - y^3
4) (-0.5+p)^3 = (p-0.5)^3
Вспоминаем формулу сокращенного умножения:
(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Получаем:
p^3 - 0,5p^2 + 0,25p - 0,125
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.