За 7 маек, 1 кепку и 3 пары кроссовок заплатили 4680 рублей, а за 2 майки, 8 кепок и 6 пар кроссовок заплатили 6300 рублей. Сколько стоит комплект из майки, кепки и пары кроссовок?
Задача на работу(многие этого не понимают, но наполнение бассейна трубами - это тоже работа). Для начала примем что-то за неизвестные. В таких задачах удобно обозначить за неизвестную производительность труб. Пусть первая труба имеет производительность x, а вторая y. Весь бассейн - это объём всей работы, мы его примем за 1(поскольку не дана его вместимость). Ещё надо помнить, что V = p * t, V - объём работы, p - производительность, t - время работы. Исходя из этого и будем составлять уравнение. Читаем первое условие.
1)Включили первую трубу с производительностью x, и она за 1 час наполнила некоторую часть бассейна. Мы помним, что V = p * t. Таким образом, за 1 час труба заполнила x литров час, труба наполнила 3x литров в бассейне, к ней присоединилась другая труба с производительностью y(они работают вместе, значит их общая производительность равна x + y). Работают они 3 часа, значит за это время они заполнили оставшуюся часть бассейна, равную 3(x+y). А все вместе обе части составляют бассейн, то есть. 1, поэтому x + 3(x+y) = 1. Получили первое уравнение. Нам надо ещё одно уравнение составить, чтобы получить систему и решить её. Сделаем это по второму условию.
2)У нас обсуждается тут разница во времени работы двух труб. Первая труба с производительностью x выполнила работу объёмом 1 за время 1/x(смотрим нашу формулу). Аналогично, вторая труба работала отдельно 1/y часов. Из условия получаем уравнение
1/x - 1/y = 2 таким образом, имеем систему x + 3(x+y) = 1 1/x - 1/y = 2
Домножим второе уравнение на знаменатели. y - x = 2xy (1) Преобразуем первое уравнение x + 3x + 3y = 1 4x + 3y = 1 (2)
Выразим из (2) x и подставим в (1): x = (1-3y)/4 Тогда (2) примет вид: y - (1-3y)/4 = 2y * (1-3y)/4 4y - (1-3y) = 2y(1-3y) 4y - 1 + 3y = 2y - 6y^2 6y^2 + 5y - 1 = 0 D = 25 + 24 = 49 y1 = (-5 - 7)/12 = -12/12 = -1 - не подходит по смыслу задачи y2 = (-5 + 7)/12 = 2/12 = 1/6 - производительность второй трубы. Тогда производительность первой равна x = (1 - 1/2) / 4 = 1/2 : 4 = 1/8
Тогда время работы первой трубы равна 1/x = 1 : 1/8 = 8 часов - это ответ.
Задача 1. Бросают игральный кубик. Событие А - выпало 2 очка (один исход из шести) Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести) Вероятность Р=Р(А)*Р(В) Р(А)=1/6 Р(В)= 3/6=1/2 Р= 1/6 * 1/2 = 1/12
Задача 2. Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96) Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные Р(А)= 0,96*0,95=0,912 (или 91,2%) б) Событие В - хотя бы одна из лампочек окажется исправной Событие С - обе лампочки бракованные Р(С)=0,04*0,05=0,002 Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт. Красных шаров - 4 шт. Белых шаров - 3 шт. Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12 После этого, в урне останется 12-1=11 шт. шаров Теперь вероятность вынуть красный шар равна 4/11 После этого, в урне останется 11-1=10 шт. шаров После этого, вероятность вынуть белый шар равна 3/10 Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22
Пусть первая труба имеет производительность x, а вторая y. Весь бассейн - это объём всей работы, мы его примем за 1(поскольку не дана его вместимость). Ещё надо помнить, что V = p * t, V - объём работы, p - производительность, t - время работы. Исходя из этого и будем составлять уравнение. Читаем первое условие.
1)Включили первую трубу с производительностью x, и она за 1 час наполнила некоторую часть бассейна. Мы помним, что V = p * t. Таким образом,
за 1 час труба заполнила x литров
час, труба наполнила 3x литров в бассейне, к ней присоединилась другая труба с производительностью y(они работают вместе, значит их общая производительность равна x + y). Работают они 3 часа, значит за это время они заполнили оставшуюся часть бассейна, равную
3(x+y).
А все вместе обе части составляют бассейн, то есть. 1, поэтому
x + 3(x+y) = 1. Получили первое уравнение. Нам надо ещё одно уравнение составить, чтобы получить систему и решить её. Сделаем это по второму условию.
2)У нас обсуждается тут разница во времени работы двух труб. Первая труба с производительностью x выполнила работу объёмом 1 за время 1/x(смотрим нашу формулу). Аналогично, вторая труба работала отдельно 1/y часов. Из условия получаем уравнение
1/x - 1/y = 2
таким образом, имеем систему
x + 3(x+y) = 1
1/x - 1/y = 2
Домножим второе уравнение на знаменатели.
y - x = 2xy (1)
Преобразуем первое уравнение
x + 3x + 3y = 1
4x + 3y = 1 (2)
Выразим из (2) x и подставим в (1):
x = (1-3y)/4
Тогда (2) примет вид:
y - (1-3y)/4 = 2y * (1-3y)/4
4y - (1-3y) = 2y(1-3y)
4y - 1 + 3y = 2y - 6y^2
6y^2 + 5y - 1 = 0
D = 25 + 24 = 49
y1 = (-5 - 7)/12 = -12/12 = -1 - не подходит по смыслу задачи
y2 = (-5 + 7)/12 = 2/12 = 1/6 - производительность второй трубы. Тогда производительность первой равна
x = (1 - 1/2) / 4 = 1/2 : 4 = 1/8
Тогда время работы первой трубы равна 1/x = 1 : 1/8 = 8 часов - это ответ.
Бросают игральный кубик.
Событие А - выпало 2 очка (один исход из шести)
Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести)
Вероятность Р=Р(А)*Р(В)
Р(А)=1/6
Р(В)= 3/6=1/2
Р= 1/6 * 1/2 = 1/12
Задача 2.
Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96)
Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные
Р(А)= 0,96*0,95=0,912 (или 91,2%)
б) Событие В - хотя бы одна из лампочек окажется исправной
Событие С - обе лампочки бракованные
Р(С)=0,04*0,05=0,002
Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт.
Красных шаров - 4 шт.
Белых шаров - 3 шт.
Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12
После этого, в урне останется 12-1=11 шт. шаров
Теперь вероятность вынуть красный шар равна 4/11
После этого, в урне останется 11-1=10 шт. шаров
После этого, вероятность вынуть белый шар равна 3/10
Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22