Если всё-таки дан периметр прямоугольника, то: периметр прямоугольника P=2(a+b) площадь прямоугольника S=a*b. Составим систему уравнений 2(a+b)=22 a+b=11 a=11-b a*b=24 a*b=24 (11-b)*b=24
11b-b²=24 -b²+11b-24=0 D=11²-4*(-1)*(-24)=121-96=25 b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3 Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см. Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
1).Найдем координату У вершины этой параболы. Сначала вычислим координату Х вершины: Xв.= -b/2a=-10/-2=5 Y(5) = -5^2+10*5+6=31 Yнаиб.=31 ( ветви параболы направлены вниз). 2) По теореме Виета x1*x2=c/a=c/5; x1+x2=-b/a=-4/5 По условию x1-x2=24 x1=x2+24 Подставим (x2+24) в одну из формул Виета: (x2+24)+x2=-4/5 2X2+24=-4/5 2x2=-4/5-24 2x2=-24,8 x2=-12,4 Найдем теперь X1: X1+X2=-4/5 x1-12,4=-4/5 x1=11,6 Теперь найдем значение "c": x1*x2=c/5 11,6*(-12,4)=c/5 -143,84=c/5 c=-719,2 3). 1-2y+y^2>0 Разложим на множители это неравенство: y^2-2y+1=0 (y-1)^2=0 (y-1)(y-1)>0 (- бесконечность;1)U (1;+ бесконечность)
периметр прямоугольника P=2(a+b)
площадь прямоугольника S=a*b.
Составим систему уравнений
2(a+b)=22 a+b=11 a=11-b
a*b=24 a*b=24 (11-b)*b=24
11b-b²=24
-b²+11b-24=0
D=11²-4*(-1)*(-24)=121-96=25
b=(-11-5)/(-2)=8 b=(-11+5)/(-2)=3
Решением задачи можно принять любой корень уравнения, допустим примем b=8 см, тогда сторона а=11-8=3 см.
Если за решение принять b=3 см, то а=8 см, то есть значения сторон прямоугольника не изменятся.
ответ: стороны прямоугольника 8 см и 3 см.
Xв.= -b/2a=-10/-2=5
Y(5) = -5^2+10*5+6=31
Yнаиб.=31 ( ветви параболы направлены вниз).
2) По теореме Виета x1*x2=c/a=c/5; x1+x2=-b/a=-4/5
По условию x1-x2=24
x1=x2+24
Подставим (x2+24) в одну из формул Виета:
(x2+24)+x2=-4/5
2X2+24=-4/5
2x2=-4/5-24
2x2=-24,8
x2=-12,4
Найдем теперь X1:
X1+X2=-4/5
x1-12,4=-4/5
x1=11,6
Теперь найдем значение "c":
x1*x2=c/5
11,6*(-12,4)=c/5
-143,84=c/5
c=-719,2
3). 1-2y+y^2>0
Разложим на множители это неравенство:
y^2-2y+1=0
(y-1)^2=0
(y-1)(y-1)>0
(- бесконечность;1)U (1;+ бесконечность)