Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
1. Многочленом называется сумма одночленов. 2. Степенью многочлена называют наибольшую из степеней входящих в него одночленов. 4. Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми. 5. Многочлен стандартного вида - многочлен, все одночлены которого приведены к стандартному виду. 6. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов. 7. Разность многочленов есть многочлен, членами которого являются все члены уменьшаемого и взятые с противоположными знаками все члены вычитаемого. 8. Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + " . Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки. Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых. 9. Чтобы найти произведение многочлена на одночлен надо каждый член многочлена умножить на этот одночлен. 11. Вынесение общего множителя за скобки. 12.Чтобы найти произведение многочленов, надо каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена 13. Разложить многочлен на множители – это значит преобразовать его в произведение двух или более многочленов 14. Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с действий сложения, вычитания и умножения.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
2. Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
4. Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.
5. Многочлен стандартного вида - многочлен, все одночлены которого приведены к стандартному виду.
6. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
7. Разность многочленов есть многочлен, членами которого являются все члены уменьшаемого и взятые с противоположными знаками все члены вычитаемого.
8. Если перед скобками стоит знак " + " , то можно опустить скобки и этот знак " + " , сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком " + " .
Чтобы раскрыть скобки, перед которыми стоит знак " – " , надо заменить этот знак на " + " , поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.
Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых.
9. Чтобы найти произведение многочлена на одночлен надо каждый член многочлена умножить на этот одночлен.
11. Вынесение общего множителя за скобки.
12.Чтобы найти произведение многочленов, надо каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена
13. Разложить многочлен на множители – это значит преобразовать его в произведение двух или более многочленов
14. Целое выражение – это математическое выражение, составленное из чисел и буквенных переменных с действий сложения, вычитания и умножения.