В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
damilyaelesheva
damilyaelesheva
14.03.2023 13:48 •  Алгебра

За круглим столом сидять 2021 людина, кожний з яких або лицар, тобто завжди каже правду, або брехун, який кожного разу бреше. Їм роздали по одній картці. На кожній з карток написане по одному числу, при цьому усі числа на картках різні. Глянувши на картки сусіда ліворуч та праворуч, кожний з 2021 людини за столом, сказав: «Число на моїй картці більше, ніж у кожного з обох моїх сусідів». Після цього k з 2021 людини за столом сказали: «Моє число менше, ніж у кожного з двох моїх сусідів». При якому найбільшему k це могло статися?

Показать ответ
Ответ:
danchik60
danchik60
01.01.2020 21:24
Пусть первое число равно x + 5, тогда второе — x – 5 (замечание: x ∈ N и x > 5). Используя данные условия, получаем, что 10^y = (x + 5)(x – 5) + 1, где y ∈ N. x² – 25 + 1 = 10^y ⇔ x² – 24 = 10^y ⇔ x² = 10^y + 24

Рассмотрим два случая.
1. 0 < y < 4.
Нетрудно убедиться, что равенству удовлетворяет только y = 3: x = 32 — тогда искомые числа 27 и 37.

2. y ≥ 4.
В этом случае 8 | x² и 4 | x ⇒ x = 4z, где z ∈ N. Равенство перепишется в 16z² = 10^(y – 3)1000 + 24 ⇔ 2z² = 10^(y – 3)125 + 3
Заметим, что 2z² ≡ 0 (mod 2), 3 ≡ 1 (mod 2), 10^(y – 3)125 ≡ 0 (mod 2) ⇒ решений нет.

Таким образом, таких чисел всего два: 27 и 37. Большее из этих чисел — 37.

ответ: 37.
0,0(0 оценок)
Ответ:
Дарина15746
Дарина15746
28.01.2023 09:07

$ \frac{a^3+b^6}{2}\geq 3ab^2-4;

Вспоминаем неравенство Коши

$\frac{a+b}{2}\geq \sqrt{ab}

Применяем:

$\frac{a^3+b^6}{2}\geq \sqrt{a^3b^6}=|ab|^3\sqrt{a}=a|b|^3\sqrt{a}, (a0)

Покажем, что правое выражение здесь не меньше правого выражения в исходном неравенстве, тогда правое выражение в исходном неравенстве тем более будет не меньше, чем левое в исходном.

Это как если надо доказать, что a>b, мы доказали, что при a>c выполняется c>b, то точно a>b (транзитивность неравенств).

Делаем это:

a|b|^3\sqrt{a}\geq 3ab^2-4; a|b|^3\sqrt{a}-3ab^2+4\geq 0; ab^2(|b|\sqrt{a}-3)+4\geq 0

Это неравенство аналогично неравенству t^2(t-3)+4\geq 0; t=|b|\sqrt{a}, t0

Чтобы решить это неравенство, надо найти нули функции

f(t)=t^3-3t^2+4;, здесь сумма коэффициентов при нечетных степенях (1) равна сумме коэффициентов при нечетных степенях (-3+4=1), значит, t=-1 - корень. Поделив уголком на t+1 или по схеме Горнера, получим разложение t^3-3t^2+4=(t+1)(t^2-4t+4)=(t+1)(t-2)^2

Теперь можно решать неравенство, при этом по методу интервалов, так как при t везде коэффициент равен 1, в самом правом промежутке будет "+", а в остальных случаях при переходе через нули будет чередоваться, кроме нулей четности, как здесь t=2 (2-я степень при скобке), знаки будут - + +

Тогда (t+1)(t-2)^2\geq 0 \Rightarrow t \in[-1;2]\cup[2;+\infty) \Rightarrow t \in [-1;+\infty)

Но мы рассматриваем только t>0, а там везде неравенство выполняется, значит, выполняется и неравенство ab^2(|b|\sqrt{a}-3)+4\geq 0, то есть $\left \{ {{a|b|^3\sqrt{a}=\sqrt{a^3b^6}\geq 3ab^2-4} \atop {\frac{a^3+b^6}{2}\geq \sqrt{a^3b^6} }} \right. \Rightarrow \frac{a^3+b^6}{2} \geq 3ab^2-4

Что и требовалось доказать (естественно, неравенство справедливо по условию с ограничением a>0)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота