где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.