Пусть x - количество монет в мешке, а значит в сундуке: 3x монет. После того, как из мешка переложили 24 монеты, в сундуке стало: 3x+24, а в мешке x−24. И если в сундуке их стало в 7 раз больше чем в мешке, то имеем: 3x+24=7(x−24).
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно x и записать ответ.
Решим полученное уравнение: 3x+24=7(x−24). Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: 3x+24=7x−7⋅24. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит x в левую, получим: 24+7⋅24=7x−3x. После упрощения получили 192=4x, разделим обе части уравнения на коэффициент при неизвестном, т.е на 4, тогда получим x=48.
За переменную x мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е 3x.
В мешке 48 В сундуке 144
Объяснение:
Пусть x - количество монет в мешке, а значит в сундуке: 3x монет. После того, как из мешка переложили 24 монеты, в сундуке стало: 3x+24, а в мешке x−24. И если в сундуке их стало в 7 раз больше чем в мешке, то имеем: 3x+24=7(x−24).
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно x и записать ответ.
Решим полученное уравнение: 3x+24=7(x−24). Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: 3x+24=7x−7⋅24. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит x в левую, получим: 24+7⋅24=7x−3x. После упрощения получили 192=4x, разделим обе части уравнения на коэффициент при неизвестном, т.е на 4, тогда получим x=48.
За переменную x мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е 3x.
Монет в мешке: 48
Монет в сундуке: 48⋅3=144
1. 2x2+3x+19 = 0
D= b2 - 4ac
D=9 - 4*2·19 = -143
2. 26х2+5х+10=0
D= b2 - 4ac
D= 25 - 4*26*10 = -1015
D<0 корней нет
3. x2+8x+15=0
D= b2 -4ac
D= 64 - 4*15= 4
x1= -b+√D / 2a = -8 +2 / 2*1 = -6/2 = -3
x2= -b - √D / 2a = -8 - 2 / 2*1 = -10/2 = -5
4. 4x2−14x+6=0
D= b2 - 4ac
D= 196 - 4*4*6 = 100
x1= -b+√D / 2a = 14 + 10 / 2*4 = 24/8 = 3
x2= -b - √D / 2a = 14 -10/ 2*4 = 4/8 = 1/2
5. 6x2+6x+15=0
D= b2 - 4ac
D= 36 - 4*6*15 = -324
6. 2x2+19x+1=0
D= b2 - 4ac
D= 361 - 4*2*1 = 353
D>0 2 корня
7. x2+8x+16=0
D= b2 - 4ac
D= 64 - 4*16 = 0
x= -b+ √D / 2a = -8+0 / 2*1 = -8/2 = -4
8. 2x2−7x+6=0
D= b2 - 4ac
D= 49 - 4*2*6 = 1
x1= -b+√D / 2a = 7 +1/ 2*2 = 8/4 = 2
x2= -b - √D / 2a = 7 -1/ 2*2 = 6/4 = 3/2 = 1 1/2