В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
кирилл2434
кирилл2434
27.01.2020 02:21 •  Алгебра

За першу секунду тіло пройшло 20 м, а за кожну наступну проходило на 5 м більше,ніж за попередню.знайдіть шлях,пройдений тілом за 8 с

Показать ответ
Ответ:
arte6767
arte6767
05.12.2021 00:28
1. Проще всего разложить 1998 на множители, и подбором найти решение.
1998 = 2 * 999 = 2 * 3^2 * 111 = 2 * 3^3 * 37
Очевидно, что 37 - один из делителей S(a) [ясно же, что это не цифра :)]
- Если S(a) = 37, то П(a) = 2 * 3 * 3 * 3 = 54
Подумаем, как бы заполучить число поменьше с такими суммой и произведением. Ясно, что придется дописывать кучу единиц, логично их дописывать в начало числа, а все остальные цифры сделать побольше, чтобы сэкономить количество разрядов. Не-единицами в нашем случае будут 6 и 9 (их сумма равна 15), тогда надо дописать 37 - 15 = 22 единицы, т.е. кандидат на искомое число - это
111111111111111111111169
- Если S(a) > 37 (т.е. S(a) >= 2 * 37 = 74), то не-единиц в записи числа может быть не более четырех (хотя, как уже понятно, их должно быть меньше). Даже если бы это были четыре девятки, то единиц пришлось бы дописать не менее 74 - 4 * 9 = 38, и получающиеся числа содержали бы не менее 38 цифр - и были бы гарантированно больше, чем уже найденное число, в записи которого "всего лишь" 24 цифры.
ответ 1. 111111111111111111111169

2. Пойдем тем же путем.
2010 = 2 * 3 * 5 * 67
Сумма цифр должна делится на 67, пусть она равна 67, тогда произведение равно 2 * 3 * 5 = 30.
Тогда есть такое число с S(a) * П(a) = 2010:
1111... (57 единиц) ... 111235 = X
Похоже, что оно и будет минимальным числом (по таким же причинам, что и в первом случае). Но даже если это и не так, то минимальное число, удовлетворяющее условию S(a) * П(a) = 2010 всё равно существует: достаточно проверить числа от 1 до X - 1, найти все числа, удовлетворяющие равенству, и выбрать из них наименьшее.
ответ 2. да, имеется.

P.S. Конечно же, для любого натурального N есть наименьшее решение уравнения S(a) * П(a) = N. Как уже было показано, достаточно найти одно решение, из чего следует, что гарантированно найдется наименьшее решение. Но есть универсальное решение, подходящее для любых N - это число, состоящее из N единиц (тогда S(a) = N, П(a) = 1). Поэтому решение задачи имеется при любых N.
0,0(0 оценок)
Ответ:
Myrzik007
Myrzik007
03.11.2020 23:01
По физическим соображениям понятно, что k > 0 - толстую балку явно сложнее согнуть, чем тонкую. Начиная с этого момента будем считать, что k = 1 (физики скажут, что мы выбрали такую систему координат, в которой k безразмерно и равно 1) - это явно никак не влияет на положение максимума.

Можно считать, что сечение сделано так, как будто прямоугольник со сторонами x, y вписан в окружность диаметра d (Почему это верно: пусть всё не так, и, например, x при фиксированном y можно увеличить. Тогда увеличим - и q тоже увеличится, чего не может быть, если достигнут максимум.)

Если прямоугольник вписан, то его диагональ - диаметр окружности. По теореме Пифагора  x^2 + y^2 = d^2, откуда y^2 = d^2 - x^2. Подставляем это в формулу и получаем такую формулировку задачи:
Найти максимальное значение функции q(x) = x(d^2 - x^2) на отрезке [0, d].

Берем производную:
q'(x0) = (x0 * d^2 - x0^3)' = d^2 - 3x0^2

Присваиваем производную к нулю и решаем получившееся уравнение (учтя, что x > 0):
d^2 - 3x0^2 = 0
x0^2 = d^2 / 3
x_0=\dfrac{d}{\sqrt3}=\dfrac{d\sqrt3}3

Найденная точка - точка максимума (хотя бы потому, что q' > 0 при 0 < x < x0 и q' < 0 при x > x0). Поэтому можно сразу писать ответ.

ответ. (x,y)=\left(\dfrac {d\sqrt3}{3},\dfrac{d\sqrt6}{3}\right)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота