Задача 1.2. Даны два многочлена A = 2a−2b−c + 1 и B = −2a + 2b−c−5 от трёх переменных a,b,c. Найдите: а) все коэффициенты многочлена A; б) значение многочлена B при a = −0,25,b = 9 4,c = −7;в) многочлены A + B и A−B; г) от каких переменных зависит каждый из многочленов A + B и A−B; д*) придумайте такой многочлен C, чтобы многочлен A − 2B + 3C зависел только от переменной c; Задача 1.3. Решите уравнение (3x2 −2x−1)−(2x2 −3x−5) = x2 −7. Задача 1.4. Даны многочлены A = 4x3 −5x + 11, B = 2x3 + x2 −6x и C = −x + 1 от одной переменной x. Найдите: а) степень каждого из данных многочленов A,B,C; б) многочлен −2A−3B + 4C и запишите его в стандартном виде; в) придумайте такой многочлен D, чтобы многочлен A−2B −D был бы многочленом первой степени. Задача 1.5. Найдите многочлены P и Q, если их сумма есть многочлен 2x2, а их разность P −Q — многочлен −4x3.
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.