1) Пусть число sqrt(2 + sqrt(2)) — рациональное. Тогда и его квадрат 2 + sqrt(2) рационален. Но это не так, 2 + sqrt(2) — сумма рационального и иррационального чисел. Противоречие.
(Доказательство иррациональности числа sqrt(2): пусть sqrt(2) = m/n, m/n - несократимая дробь, m,n — натуральные числа. Возводим в квадрат, домножаем на n^2, получаем m^2 = 2n^2, откуда m — чётное. Пусть m = 2M. Подставляем, сокращаем на 2, получаем n^2 = 2M^2, откуда n — тоже чётное, что противоречит предположению о несократимости дроби m/n)
2) Пусть число sqrt(5) + sqrt(2) - 1 рациональное, тогда и sqrt(5) + sqrt(2) тоже рациональное, и (sqrt(5) + sqrt(2))^2 = 5 + 2 + 2sqrt(10) = 7 + 2 sqrt(10) рациональное, тогда и sqrt(10) тоже рациональное. Но sqrt(10) — иррациональное, противоречие. Значит, sqrt(5) + sqrt(2) - 1 — иррациональное.
Иррациональность sqrt(10) доказывается аналогично: sqrt(10) = m/n, m^2 = 10n^2. Дальше можно, наример, точно так же, как и в примере выше, доказать, что m и n должны быть чётными.
(Доказательство иррациональности числа sqrt(2): пусть sqrt(2) = m/n, m/n - несократимая дробь, m,n — натуральные числа. Возводим в квадрат, домножаем на n^2, получаем m^2 = 2n^2, откуда m — чётное. Пусть m = 2M. Подставляем, сокращаем на 2, получаем n^2 = 2M^2, откуда n — тоже чётное, что противоречит предположению о несократимости дроби m/n)
2) Пусть число sqrt(5) + sqrt(2) - 1 рациональное, тогда и sqrt(5) + sqrt(2) тоже рациональное, и (sqrt(5) + sqrt(2))^2 = 5 + 2 + 2sqrt(10) = 7 + 2 sqrt(10) рациональное, тогда и sqrt(10) тоже рациональное. Но sqrt(10) — иррациональное, противоречие. Значит, sqrt(5) + sqrt(2) - 1 — иррациональное.
Иррациональность sqrt(10) доказывается аналогично: sqrt(10) = m/n, m^2 = 10n^2. Дальше можно, наример, точно так же, как и в примере выше, доказать, что m и n должны быть чётными.
(2p + 8)x² + 4px + 4 = 0
D = (4p)² - 4 * 4 * (2p + 8) = 16p² - 32p - 128
16p² - 32p - 128 > 0
p² - 2p - 8 > 0
(p - 4)(p + 2) > 0
+ - 2 - 4 +
p ∈ (- ∞ ; - 2) ∪ (4 ; +∞)
б) Квадратное уравнение не имеет корней, когда дискриминант меньше нуля
(p - 4)(p + 2) < 0
p ∈ (- 2; - 4) - рисунок сверху
в) Квадратное уравнение имеет один корень когда дискриминант равен нулю.
(p - 4)(p + 2) = 0
ответ: - 2; 4