Задача 2. На музыкальном фестивале каждый день выступает а артистов. Каждый артист даёт n номеров.
Представьте в виде одночлена:
а) количество номеров, которое дается на фестивале каждый день;
б) количество номеров, которое будет дано на фестивале за d дней;
в) количество номеров, которое будет дано на з таких фестивалях продол-
жительностью 6 дней, если а = 2, n — 5.
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
Скорость II туриста - у км/ч
Первая часть задачи:
Расстояние , пройденное I туристом - 2х км
Расстояние , пройденное II туристом - 2у км
Расстояние , пройденное двум туристами - (24-6)= 18 км
Первое уравнение :
2х + 2у = 18
Вторая часть задачи:
Расстояние, пройденное I туристом - (2+2) х = 4х км
Расстояние, пройденное II туристом - (2+2)у = 4у км
Разница в расстоянии - 4 км
Второе уравнение:
4х - 4у = 4
Система уравнений:
{2x+2y=18 | :2
{4x - 4y= 4 | :4
{x+y = 9 ⇒ у=9-х
{x-y=1
метод сложения
х+у +х-у=9+1
2х=10
х=10/2
х=5 (км/ч) скорость I пешехода
у=9-5= 4 (км/ч) скорость II пешехода
ответ: 5 км/ч скорость первого пешехода, 4 км/ч скорость второго пешехода.