в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
В решении.
Объяснение:
7. Упростить:
(х√у - у√у)/2 * [√х/(√х + √у) + √х/(√х - √у)]= х√у.
1) [√х/(√х + √у) + √х/(√х - √у)]=
общий знаменатель (√х + √у)(√х - √у), надписываем над числителями дополнительные множители:
=[(√х - √у) * √х + (√х + √у) * √х] / (√х + √у)(√х - √у)=
=(х - √ху + х + √ху) / (√х + √у)(√х - √у)=
в знаменателе развёрнута разность квадратов, свернуть:
= 2х/(х - у);
2) Умножение:
(х√у - у√у)/2 * 2х/(х - у)=
=[√у(х - у)]/2 * 2х/(х - у)=
=[√у(х - у) * 2х] / [2 * (х - у)]=
сократить (разделить 2 и 2 на 2, (х - у) и (х - у) на (х - у):
= х√у.
8. Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = √49
-7 ≠ 7, не проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х∈ [81; 289] у∈ [9; 17].
а) -4х²-6х+6, -4 коэфициент при старшей степени
б) +3 свободный член
2.
а)х²+6х+7=х²+2·х·3+3²-3²+7=х²+6х+9-9+7=(х+3)²-2;
б)х²-6х=х²-2·х·3+3²-3²=(х+3)²-9;
3.
а)х²-6х-16
х²-6х-16=0
D=(-6)²-4·1·(-16)=36+64=100
x1=(6-10)/2=-2
x2=(6+10)/2=8
x²-6x-16=(x+2)(x-8)
б)9х+6х-8
9х+6х-8=0
D=6²-4·9·(-8)=36+288=324=18²
x1=(-6-18)/(2·9)=-24/18=-4/3
x2=(-6+18)/(2·9)=12/18=2/3
4.
х² – х – 6 = 0
x=-2
(-2)²-(-2)-6=4+2-6=6-6=0;
x²+2x-3x-6=0;
x(x+2)-3(x+2)=0;\\
(x+2)(x-3)=0;\\
x=-2; 3
5.a\
a) y²-10y+26>0
y²-10y+26=y²-2·y·5+5²-5²+26=(y-5)²+26-25=(y-5)²+1
(y-5)²≥0
(y-5)²+1≥1>0
(y-5)²+1>0
b)–у² + 4у – 6<0
–у² + 4у – 6=–у² + 2·у·2-2² +2²– 6=-(y²-2·y·2+2²)-6+4=-(y-2)²-2
(y-2)≥0;
-(y-2)²≤0
-(y-2)²-2≤-2<0
-(y-2)²-2<0
6.
a)a²-4a+7=a²-2·a·2+2²-2²+7=(a-2)²+3
min (a-2)²=0
mix a²-4a+7=3
min=3
b)-a²+6a-14=-a²+2·a·3-3²+3²-14=-(a²-2·a·3+3²)+9-14=-(a-3)²-5;\\
min(a-3)²=0;
max -(a-3)²=0;
max-(a-3)²-5=-5;
max=-5
7.
(a-8)(12-a)=-a²+12a-8a-96=-a²+4a-96=-a²+2·a·2-2^2+4+96=-(a-2)²+100
при а =10 мах