Задача 6. Что важнее? В задаче № 4 стажерами были выделены наиболее острые проблемы района.
Администрация района предложила определить жителям приоритет финансового вложения в решение этих проблем.
Можно было выделить одну проблему и потратить выделенные финансы только на одно решение, либо выбрать две с распределением финансов.
Часть жителей проголосовали только за финансирование решений по проблеме «А», еще часть только за решение по проблеме «Б», но были те, кто считает важным, одновременное решение обеих проблем. Таким образом, 75% всех жителей высказались за решение проблемы «Б» на территории, 85% — за устранение проблемы «А».
В ответе укажите, сколько процентов жителей района предложили решать обе проблемы одновременно?
4 4 * 4 = 16.
41
411 413 но ящиков 4.
412 414 16 * 4 = 64 числа.
42
421 423
422 424
43
431 433
432 434
44
441 443
442 444
ответ:
y = x^4 – 2x^2 – 8.
найдем координаты точек пересечения графика функции с осью абсцисс (х).
x^4 – 2x^2 – 8 = 0.
произведем замену: а = x^2, a^2 = x^4.
a^2 – 2а – 8 = 0.
дискриминант:
d = 2^2 – 4*(-8) = 4 + 32 = 36.
a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.
a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.
x^2 = 4 ⇒ х1 = 2, х2 = -2.
уравнение касательной:
у = f(x0) + f ‘(x0)(x – x0).
1. x0 = x1 = 2.
f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.
уравнение касательной:
у1 = 24(x – 2) = 24х – 48.
2. x0 = x1 = - 2.
f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.
уравнение касательной:
у2 = -24(x + 2) = -24х - 48.
3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:
24х – 48 = -24х - 48;
24х + 24х = - 48 + 48;
48х = 0;
х = 0/48;
х = 0.
у1 = 24*0 – 48 = 0 – 48 = -48.
ответ: (0; -48).