Задача 6 Торговая фирма закупила и реализовала пива - 50 л, виноводочных изделий - 40 л, табачных изделий - 500 пачек. Всего реализовано товаров на сумму 12,0 тыс. руб. (без НДС), торговая надбавка получена в сумме 2,0 тыс. руб. Какие налоги обязана уплатить фирма?
t^4+(t-4)^4=626,
t^4+(t^2-8t+16)^2=626,
t^4+t^4-8t^3+16t^2-8t^3+64t^2-128t+ 16t^2-128t+256=626,
2t^4-16t^3+96t^2-256t+256=626,
Делим на 2 обе части:
t^4-8t^3+48t^2-128t+128=313,
t^4-8t^3+48t^2-128t-185=0,
t^4+t^3-9t^3-9t^2+57t^2+57t-185t-185 =0, t^3(t+1)-9t^2(t+1)+57t(t+1)-185(t+1)=0
(t+1)(t^3-9t^2+57t-185)=0,
(t+1)(t^3-5t^2-4t^2+20t+37t-185)=0,
(t+1)(t^2(t-5)-4t(t-5)+37(t-5))=0,
(t+1)(t-5)(t^2-4t+37)=0,
Найдем корни уравнения
t^2-4t+37=0, t=(4+-√(16-4*37))/2,
16-4*37<0, поэтому вещественных корней нет, тогда получаем
t+1=0, t-5=0, t=-1, t=5,
3x+2=-1, 3x=-3, x=-1
3x+2=5, 3x=3, x=1
ответ: x=-1, x=1.
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.