Задачи по теме:
1. Решим в качестве примера диофантово уравнение: 13x+41y=8
2. Решить уравнение в целых числах:
3. Найти все целочисленные решения уравнения:
4. Решить уравнение в целых числах:
5. Найти все натуральные решения уравнения
6. Решить в целых числах уравнение
7. Решить в целых числах уравнение:
8. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько может быть в клетке тех и других?
9. Решить в целых числах уравнение:
1. Решить в целых числах:
1. Решить в целых числах уравнение:
2. Найти все пары натуральных чисел, удовлетворяющих уравнению
3. Решить в целых числах уравнение .
4. Решить уравнение в целых числах: х2+ху=10
5. Решить уравнение в целых числах y3 - x3= 91.
6. Решить уравнение в целых числах: 2х2-2ху +9х+у=2
7. Решить в натуральных числах уравнение: , где тп.
8. Решить уравнение в натуральных числах: тп +25 = 4т
9. Найдите все пары (х; у) целых чисел, удовлетворяющие системе неравенств я не чо не понял
Решение начнем с того, что перенесем все члены уравнения в одну сторону:
sin^2 (3x) = cos^2 (3x) – 1
cos^2 (3x) – sin^2 (3x) – 1 = 0.
Обратим внимание на разницу первых двух членов. Эту разницу можно свернуть в более короткую и удобную форму по формуле косинуса двойного угла, которая записывается следующим образом:
cos (2x) = cos^2 (x) – sin^2 (x).
В качестве аргумента в нашем случае выступает аргумент 3х. Запишем уравнение, свернув разницу первых двух членов по выше упомянутой формуле:
cos (2 * 3x) – 1 = 0
cos (6x) – 1 = 0.
Перепишем полученное уравнение в более удобной форме:
cos (6x) = 1.
Решим полученное тригонометрической уравнение любым из доступных Если косинус от любого аргумента равен единице, то аргумент этой функции равен 2 * пи * n. В данном случае аргумент косинуса равен 6х:
6x = 2 * пи * n.
Осталось вычислить значение переменной х. для этого разделим обе части уравнения на 6:
x = (пи * n ) / 3
x = пи / 3 * n.
ответ. x = пи / 3 * n, n – любое целое число.
1) 2sinx+1=0
2cosx-\/3=0
sinx=-1/2
cosx=\/(3)/2
x=-п/6+2пn, n - целое число
х=-5п/6+2пk, k - целое число
х=п/6+2пl, l - целое число
х=5п/6+2пq, q - целое число
х=п/6+пn
x=-п/6+пk
2) tgx=t, t не равно п/2+пn, n - целое число
3t^3-2t-1=0
(t-1)(3t^2+3t+1)=0
(1) t=1
(2) 3t^2+3t+1=0
D=9-12<0 уравнение не имеет корней в действительных чистах
t=1
tgx=1
x=п/4+пk, k - целое число
3) (1) cos6x=0, cos2x не равно 0
6х=п/2+пn, n - целое число
х=п/12+пn/6
x не равно п/4+пk/2, k - целое число
x=п/12+пm/6, m - целое число, неравно 3k+1
4) sin3x=0
2cosx-\/2=0
3x=пn, n - целое число
cosx=\/(2)/2
x=пn/3
x=п/4+2пk, k - целое число
х=-п/4+2пm, m - целое число