Задана функция y=f(x) и два значения аргумента x_1 и x_2. требуется установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента, и сделать схематический чертеж. f(x)=11^(1/(4+x) ), где x_1=-4, x_2=-2.
С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:
а) х²= 2;
Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.
Из точки оси Оу у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 1,4;
б) х² = 7;
Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,6;
в) х² = 5,5
Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
В решении.
Объяснение:
С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:
а) х²= 2;
Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.
Из точки оси Оу у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 1,4;
б) х² = 7;
Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,6;
в) х² = 5,5
Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,3.
первое - неполное условие - нет правой части
Вторая система x = 0, y = 1
Объяснение:
√:√ = √( 6ˣ⁻²y / 6ˣ), степень в первом члене x-2y
= √( 6^ -2y) = 6^ -y = 1/6, y = 1
(1/3...)* 3 ... = 3^ (x-2y) / 3 ^( 2x-y), ^ - знак степени, скобка - показатель степени
= 3 ^ (x-2y-2x+y) = 1/ 3^ (x+y) = 1/ (3ˣ3^y), y = 1
= 1/ (3*3ˣ), = 1/3
3ˣ = 1, x = 0
По первому - т. к. неполное направление к действию
втрое уравнение ... = > 2^(x+y) = 2⁶ x+y = 6
√ * √ = z, - найдешь если это число подставишь - условие ищи полное - это должна быть какая-то степень 3.
√ * √ = √( 3ˣ⁻¹*3^2y) = √ 3^(x+2y-1), x+y = 6, и возведем обе части в квадрат => 3^(5+y) = z² - представляем как 3ⁿ
далее 5+ y = n, у = n-5