1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).