Задание №1. Из данных выражений вынесите общий множитель за скобки и затем выпишите попарно те из них, которые будут содержать одинаковые двучлены:
а) 4ху – 2х2у; 2ах2 – 3а2х; -3ах + 2х2; 2х – х2;
б) 4х – 8; х2 – 2х; -5 – 15m; 21mn + 7n;
в) n2 – nm; 6а2 – 9аb; mn – n2; 2ab – 3b2.
33=30+3, 77=70+7.
Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77...
Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7.
Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости...
Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3...
3^1=3
3^2=9
3^3=27
3^4=81
3^5=243...
Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1.
77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5.
(7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.
По условию задачи масса смеси равна 50 кг.
Составляем первое упавнение: х+у=500,25х +0,4у=0,34*50 - второе уравнение. Решаем систему:
х+у=50
0,25х +0,4у=0,34*50
х= 50-у
0,25(50-у) +0,4у = 17
12,5 -0,25у +0,4у =17
0,15у = 4,5
у = 30 (кг) - масса второго раствора
х = 50-30=20 (кг) - масса первого раствора