Задание 1 Поставить вместо пропусков выражения или знаки так, чтобы получилось тождество:
а) (х … y)2 = х2 + 2хy + …
б) (5х – … )(5х + 3) = … – 9
в) (х – 2)( х2 + … + …) = х3 …8
г) (… + …)2 = 36 х2 + 12хy + …
д) (х2 – … )( х2 + …) = … – y2
е) (… – 5)(… – … + …) = х3 – 125
Задание 2
Известно, что х2 + 2хy + y2 = 9, найдите:
а) (х + y)2 =
б) (х + y)2 – 5 =
в) (2х + 2y)2 =
Напоминаю, математическое выражение может быть целым или нецелым.
Выполнить задание 918 (устно).
Любой многочлен является целым выражением.
Тренируетесь, не забывайте про ВПР.
Проверочная работа – тесты (ответы прислать в виде: 1Б, 2А и т.д.)
В примерах 1-5 раскройте скобки:
1. (х + 2у) 2
А. х2 + 4ху + 4у2 В. x2 + 4у2.
Б. x2 + 4ху + 2y2. Г. x2 + 2ху + 2x2.
2. (2а - З)2.
А. 4а2 -6а + 9. В. 2а2 - 12а+ 9.
Б. 4а2-12а+ 9. Г. 4а2-9.
3. (Зх - 5у2) (Зх + 5у2).
А. 9х2 - 25у2. В. 9x2 + 25у2
Б. 9х2 + 25y4. Г. 9x2 - 25у4
4. (а + 2) (а2 - 2а + 4).
А. а3+16. В. а3 + 2а2 + 8.
Б. а3-8. Г. а3+ 8.
5. (х + 1) (х2 - х +1).
А. x3 + х2-1. Б. x3-1. В. х3-х2-1. Г. x3 + 1.
попробую росписать, как найти точки пересечения графика с осями.
Расмотрим ось икс:
если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график
0=4х-4
или 4х-4=0
4х=0+4
4х=4
х=4:4
х=1
Получается точка с координатами (1; 0)
Рассмотрим ось игрек:
если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю.
Подставляем:
у=4*0-4
у=0-4
у=-4
Иммем еще одну точку (0; -4)
Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
Площадь прямоугольника равна длине, умноженной на ширину .
(a-b)(a+b)=S₃+S₄ , прямоугольник заштрихован зелёными линиями , состоящий из суммы двух прямоугольников S₃ и S₄ .
Площадь квадрата, обведённого синим контуром равна a²=S₁+S₂+S₃ .
Площадь квадрата, обведённого жёлтым контуром равна b²=S₁ .
Если от площади квадрата а² вычесть площадь квадрата b², то получим а²-b²=(S₁+S₂+S₃)-S₁=S₂+S₃ .
Получившаяся область заштрихована красными линиями. Она состоит из суммы двух прямоугольников S₂ и S₃ , площади которых равны S₂=b(a-b)=ab-b² , S₃=a(a-b)=a²-ab .
S₂+S₃=ab-b²+a²-ab=a²-b²
S₃+S₄=a(a-b)+b(a-b)=S₃+S₂ , S₃+S₄=a²-b² .
Геометрически площадь области, заштрихованной зелёной штриховкой, равна площади области, заштрихованной красной штриховкой: S₂+S₃=S₃+S₄ .