Пусть - канонический базис в .
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду , то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса . Аналогично с матрицей .
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
Чтобы доказать тождество, нужно с тождественных преобразований:
либо правую часть привести к виду левой части;
либо левую часть привести к виду правой части ;
либо и левую и правую привести к какому другому одинаковому виду
Преобразуем левую часть:
(a - b)² = a² - 2ab + b²
Преобразуем правую часть:
(b-a)²=b² -2ba+a²
Так как аb=ba, то a²-2ab+b²=b²-2ba+a²
Значит
(a-b)²=(b-a)²
2) Выполняем тождественные преобразования левой части и приведем ее к виду правой части
(-a-b)²=(-a)²+2·(-a)·(-b)+(-b)²=a²+2ab+b²=(a+b)²
Пусть - канонический базис в .
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду , то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса . Аналогично с матрицей .
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых: