Задание 1. Вычислите площадь фигуры, ограниченной линиями y=x^2-6x+18; x=0; x=3; y=0.
Задание 2. Для функции f(x)=(3/(2-3x)^2) найдите общий вид первообразных.
Задание 3. Запишите уравнение касательной к графику функции f(x)=2 корень x+x в точке x0=1
2х-6у=-10
выражаем в каждом уравнение у через х:
3у=1-7х, у=1-7х/3
-6у=-10-2х, у=10+2х/6
у= 1-7х
3
у= 5+х
3
Это линейные функции, график "прямая"
Строим график 1 функции
х| 0 | 1|
y|1/3|-2|
построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2)
соединили эти точки прямой.
Строим график 2 функции:
х| 0 | 1 |
y|1 1/3| 2 |
В то же прямоугольной системе координат строим точки
М(0;1 1/3),Р(1;2)
соединяем точки прямой.
Прямые пересекаются в точке Д(-1/2;1 1/2)
ответ: (-1/2; 1 1/2)
Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27.
Количество таких чисел: n=27-(3-1) = 25 .
a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * *
* ! 702 = 126 +(n-1)36⇒n=17 * * *
702 =36k+18 при k =19.
* * * P.S. * * *
a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 ||
y =(9x -2)/4 ;
y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 ||
⇒ { x =4k +2 . y =9k+4 .
|| 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 ||
a =9x =36k+18.
число a =9x =9(4k +2) =36k +18.