По первому заданию предлагаю другие решения. Первый для тех, кто знает только проценты и пропорцию. Пусть оба шкафа сначала стоили одинаково - 100 рублей Первый шкаф подорожал на 20%. 100% --- 100 руб 20% --- х руб х = 20%*100 руб/100% = 20 руб. Новая цена первого шкафа 100+20 = 120 руб. Первый шкаф подешевел на 10% 100% --- 120 руб. 10% х руб. х = 10% * 120 руб/100% = 12 руб. Новая цена первого шкафа 120-12 = 108 руб
Второй шкаф подешевел на 10% 100% --- 100 руб 10% х руб х = 10% * 100 руб/100% = 10 руб Новая цена второго шкафа 100 - 10 = 90 руб Второй шкаф подорожал на 20% 100% 90 руб 20% х руб х = 20% * 90 руб/100% = 18 руб. Новая цена второго шкафа 90 + 18 = 108 руб.
ответ: цена будет одинаковой Второй вариант в принципе требует знание только процентов и внимательности и рассуждений. Можно решить гораздо проще и быстрее и в более общем виде: Пусть начальная цена шкафов х руб. Тогда для цены первого шкафа повышение на 20% и снижение на 10% равносильны умножению: х * 1,20 * 0,9 Объяснение. Почему умножаем на 1,20? Дело в том, что если что-то повысилось на 20%, то теперь оно составляет (100% + 20%) = 120%. А 120% - это 120 сотых, или 120/100, или 1,20. А почему умножаем на 0,9? Если что-то снизилось на 10%, то оно теперь составляет (100% - 10%) = 90%. А 90% - это 90 сотых, или 90/100, или 0,9. Для второго шкафа снижение на 10% и повышение на 20% равносильны умножению: х * 0,9 * 1,20 Как видим, оба произведения отличаются только порядком множителей, значит, они равны: х * 1,2 * 0,9 = х * 0,9 * 1,2 (Как Вы помните, 1,20 = 1,2) И равны они 1,08х Значит, исходная цена х выросла в 1,08 раз или на 8% (Мы уже знаем, что умножение на 1,08 - это повышение на 8%. 100%+8% = 108% = 108/100 = 1,08) Поэтому при начальной цене, например, 100 рублей (х=100) получаем новую цену 108 руб. (1,08х), повышение цены - на 8 рублей.
sin x + cos x = 1;
Возведем правую и левую часть выражения в квадрат, тогда получим:
(sin x + cos x) ^ 2 = 1 ^ 2;
sin ^ 2 x + 2 * sin x * cos x + сos ^ 2 x = 1;
(sin ^ 2 x + cos ^ 2 x) + 2 * sin x * cos x = 1;
Так как, по формуле тригонометрии sin ^ 2 x + cos ^ 2 x = 1 и 2 * sin x * cos x = sin (2 * x), тогда получим:
1 + 2 * sin x * cos = 1;
2 * sin x * cos x = 1 - 1;
2 * sin x * cos x = 0;
sin x * cos x = 0;
1) sin x = 0;
x = pi * n, где n принадлежит Z;
2) cos x = 0;
x = pi / 2 + pi * n, где n принадлежит Z.
Первый для тех, кто знает только проценты и пропорцию.
Пусть оба шкафа сначала стоили одинаково - 100 рублей
Первый шкаф подорожал на 20%.
100% --- 100 руб
20% --- х руб
х = 20%*100 руб/100% = 20 руб.
Новая цена первого шкафа 100+20 = 120 руб.
Первый шкаф подешевел на 10%
100% --- 120 руб.
10% х руб.
х = 10% * 120 руб/100% = 12 руб.
Новая цена первого шкафа 120-12 = 108 руб
Второй шкаф подешевел на 10%
100% --- 100 руб
10% х руб
х = 10% * 100 руб/100% = 10 руб
Новая цена второго шкафа 100 - 10 = 90 руб
Второй шкаф подорожал на 20%
100% 90 руб
20% х руб
х = 20% * 90 руб/100% = 18 руб.
Новая цена второго шкафа 90 + 18 = 108 руб.
ответ: цена будет одинаковой
Второй вариант в принципе требует знание только процентов и внимательности и рассуждений.
Можно решить гораздо проще и быстрее и в более общем виде:
Пусть начальная цена шкафов х руб.
Тогда для цены первого шкафа повышение на 20% и снижение на 10% равносильны умножению:
х * 1,20 * 0,9
Объяснение. Почему умножаем на 1,20? Дело в том, что если что-то повысилось на 20%, то теперь оно составляет (100% + 20%) = 120%. А 120% - это 120 сотых, или 120/100, или 1,20. А почему умножаем на 0,9? Если что-то снизилось на 10%, то оно теперь составляет (100% - 10%) = 90%. А 90% - это 90 сотых, или 90/100, или 0,9.
Для второго шкафа снижение на 10% и повышение на 20% равносильны умножению:
х * 0,9 * 1,20
Как видим, оба произведения отличаются только порядком множителей, значит, они равны:
х * 1,2 * 0,9 = х * 0,9 * 1,2 (Как Вы помните, 1,20 = 1,2)
И равны они 1,08х
Значит, исходная цена х выросла в 1,08 раз или на 8% (Мы уже знаем, что умножение на 1,08 - это повышение на 8%. 100%+8% = 108% = 108/100 = 1,08)
Поэтому при начальной цене, например, 100 рублей (х=100) получаем новую цену 108 руб. (1,08х), повышение цены - на 8 рублей.