1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Найдем критические точки, для этого найдем производную и приравняем ее нулю, или точки, в которых производная не существует: y(x) = x + 49/x y`(x) = 1 - 49/x^2 = 0 x^2 = 49, т.е. х1 = -7, х2 = 7 Не существует в точке х = 0. Данному интервалу соответствует только одна точка, х = 7. Найдем что это за точка, для этого найдем 2 производную и подставим туда значение х = 7: y``(x) = 98/x^3 y``(7) = 98/343 ,т.к. вторая производная положительна, то имеем точка минимума. Минимальное значение функции достигается в точке х = 7 и равно: y(7) = 7 + 49/7 = 14
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
y(x) = x + 49/x
y`(x) = 1 - 49/x^2 = 0
x^2 = 49, т.е. х1 = -7, х2 = 7
Не существует в точке х = 0.
Данному интервалу соответствует только одна точка, х = 7.
Найдем что это за точка, для этого найдем 2 производную и подставим туда значение х = 7:
y``(x) = 98/x^3
y``(7) = 98/343 ,т.к. вторая производная положительна, то имеем точка минимума.
Минимальное значение функции достигается в точке х = 7 и равно:
y(7) = 7 + 49/7 = 14