В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
яна7933
яна7933
02.12.2022 09:07 •  Алгебра

Задание #5
Во Выберите верные равенства:

Выберите несколько из 4 вариантов ответа:
1) (cos(5x+3))^/ = 5 sin (5x+3)
2) (sin(5x+3))^/ = 5cos(5x+3)
3) (cos(5x+3))^/ = -5sin(5x+3)
4) (cos(5x+3))^/ = 5cos(5x+3)
^ - это степень
С ПОЛНЫМ РЕШЕНИЕМ

Показать ответ
Ответ:
ivanychboss
ivanychboss
19.09.2021 17:43

Дано:

Торможение:

1-я сек. - 16 м

каждая следующая сек. на 1.1 м меньше

Найти:  ? полных сек. для остановки

Решение с формулы n-члена арифметической прогрессии:

a₁=16

d=-1.1

a(n)=0  - остановка

a(n)=a₁+d(n-1)

16+(-1.1)(n-1)=0

16-1.1n+1.1=0

-1.1n=-17.1

n=15.(54)

Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.

Округляем до целых секунд: 15.(54)≈16 сек.

ответ: полных 16 сек. потребуется

0,0(0 оценок)
Ответ:
НикВероник1
НикВероник1
27.11.2021 04:12
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков:
∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1

Далее преобразуем слагаемые в разности косинусов:
sin(a + k*(b-a)/n) = sin(a + k*(b-a)/n) * sin( (b-a)/2n ) / sin( (b-a)/2n ) = 1/(2sin((b-a)/2n)) * [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)]

Здесь были применены формулы
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y))
Где x = a + k*(b-a)/n, y = (b-a)/2n

y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.

Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду
(b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1

Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.

∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)] = cos(a - 1/2 (b-a)/n) - cos(a + (n - 1/2)*(b-a)/n)

При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)

Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1

Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота