В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
egorikysik
egorikysik
25.12.2020 04:54 •  Алгебра

Задание N 1.
Распределите уравнения на две группы. Объясните свой выбор.
—7х + x2 + 12 = 0
3х2 - 7х + 2 = 0
32 – 4х – x2 = 0
с2 – 8c + 12 = 0
а2 – а – 20 = 0
— Зm +7,5 + 0,3m2 = 0
2а? – 9а - 18 = 0
3 + 20b – 7b2 = 0

Показать ответ
Ответ:
masgovorchenko
masgovorchenko
09.10.2021 12:13

Детский билет стоит 60 рублей,

Взрослый билет стоит 195 рублей.

Объяснение:

Обозначим один детский билет как "x", а один взрослый билет - "y".

В условии сказано, что первая семья купила 2 детских билета и один взрослый, заплатив 315 рублей. Следовательно:

2x + y = 315.

Вторая же семья купила 3 детских и 2 взрослых, заплатив 570 рублей. Следовательно:

3x + 2y = 570.

Составим систему уравнений:

{2x + y = 315

{3x + 2y = 570

Решим систему уравнений подстановки:

{y = 315 - 2x

{3x + 2y = 570

Подставим значение Y во второе уравнение:

3x + 2 * (315 - 2x) = 570

Раскроем скобки:

3x + 630 - 4x = 570

с "x" в левой части, без "x"  - переносим в правую с противоположным знаком.

3x - 4x = 570 - 630

-x = -60 / : (-1)

x = 60 - стоимость одного детского билета.

y = 315 - 2x = 315 - 2 * 60 = 315 - 120 = 195 - стоимость одного взрослого билета.

0,0(0 оценок)
Ответ:
2007628475626
2007628475626
03.04.2021 01:09
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота